Studies on the preparation of camphorylidene derivatives of α-amino acids

David L. Gamble, William P. Hems and Brian Ridge*
School of Chemistry, The University of Exeter, Stocker Road, Exeter, Devon, UK EX4 4QD.
E-mail: B. Ridge@exeter.ac.uk

Received (in Cambridge, UK) 21st September 2000, Accepted 6th December 2000
First published as an Advance Article on the web 11th January 2001

An improved method has been developed for the efficient synthesis of stable camphor imine salts. Camphor imine readily undergoes transimination with α-amino acid ester hydrochlorides to yield camphorylidene amino acid derivatives with E stereochemistry about the $\mathrm{C}=\mathrm{N}$ double bond. Sodium cyanoborohydride reduction of the derived ketimines gives exo-bornylamines.

Introduction

The preparation of imines derived from camphor and α-amino acids was required as part of a project directed to the synthesis of peptides in aqueous phase. In contrast to aldimines that are readily prepared, ketimines are difficult to synthesise, ${ }^{1}$ particularly from camphor derivatives. ${ }^{2}$ The method which has been employed with varying degrees of success is the addition/ elimination of camphor and a primary amine. Reagents such as $\mathrm{TiCl}_{4},{ }^{3} \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O},{ }^{4,5}$ molecular sieves, ${ }^{6}$ anhydrous $\mathrm{ZnCl}_{2}{ }^{7}$ and tetraethyl orthosilicate with acid catalysis, ${ }^{8}$ have been employed. Generally forcing conditions have been used, such as high temperatures, non-stoichiometric quantities of reagents, and stringently anhydrous conditions, including azeotropic distillation. ${ }^{3}$ Additionally the enhanced 'carbonyl' addition of thiocamphor ${ }^{9}$ and the addition-elimination of thiocamphor S-oxide ${ }^{10}$ have been employed.

Of these methods, $3 \AA$ molecular sieves in methanol have been used to prepare stable ketimines derived from ortho-hydroxyaryl ketones and a range of α-amino acid tetramethylammonium salts, ${ }^{11}$ and thiocamphor has been refluxed in toluene with tert-butyl glycinate in the presence of 1,4 diazabicyclo[2.2.2]octane (DABCO) to give the desired imine. ${ }^{12}$

Results and discussion

Exploratory studies showed that all of the above mentioned methods lacked generality for the synthesis of camphorylidene α-amino acid ester derivatives. For example, when camphor and glycine ethyl ester were refluxed in benzene with water entrainment, unchanged camphor was recovered together with some polyglycinate. Moreover, the methods using titanium tetrachloride, anhydrous zinc chloride, or boron trifluoride-diethyl ether failed to effect conversion of the camphor. In each case some of the ethyl glycinate was converted into glycine polymer Clearly, the Lewis acid is activating the amino acid to polycondensation in preference to activating the carbonyl group of camphor.
Further studies in which thiocamphor and glycine ethyl ester were refluxed together in both the absence and presence of boron trifluoride-diethyl ether failed to elicit reaction. However, a successful reaction was achieved using the procedure of McIntosh and Mishra ${ }^{12}$ in which thiocamphor was refluxed in xylene containing a large excess of DABCO with glycine ethyl ester hydrochloride. However, this example appeared to be unique and utilisation of the procedure with, for example, diethyl (S)-glutamate hydrochloride, failed to reveal any evi-
dence of reaction after a 48 h reflux. We therefore conclude that camphor shows such severe steric hindrance as to preclude conventional imine-forming reactions with α-amino acid esters, particularly those with side-chain substitution. Accordingly, a method needs to be found which is mechanistically distinct from the conventional methods and allows for the protic equilibrium to be altered so that use can be made of the steric expulsion of the leaving group. This is the subject of the present investigation.

Formation of camphor imine

O'Donnell and Polt ${ }^{13}$ have reported that benzophenone imine readily undergoes transimination under very mild conditions, with a range of α-amino acid ester hydrochlorides, to yield a variety of benzophenone ketimines of α-amino esters. The present paper reports on the application of this method to the camphor system.
(R, R)-Camphor imine ${ }^{14}$ was first prepared in 1896 as a stable nitrate salt 2a by Mahla and Tiemann by nitrosation of (R, R) camphor oxime $1 .{ }^{15} \dagger$ Camphor oxime in diethyl ether was shaken in a separating funnel with aq. sodium nitrite to which a deficiency of sulfuric acid had been added. The separated ether phase turned deep red and fine, white, needle-like crystals of the product 2a separated. A possible mechanism for this redox process, based on the observation that the presumptive reactive intermediate can be trapped as a nitramine by lithium aluminium hydride reduction, ${ }^{16}$ and that nitrimine formation can be demonstrated in related systems, ${ }^{17}$ is shown in Scheme 1.
In our hands the procedure gave a yield of only 15%, presumably due to the water present in the reaction mixture. The yield could be improved to $22-28 \%$ by extracting the generated nitrous acid into diethyl ether and briefly drying the ether phase by filtering it through cotton wool before adding it to an ethereal solution of the oxime (Scheme 2).
Later, in a related system, Guziec and Russo ${ }^{17}$ showed that camphor imine could be prepared more efficiently in a two-step process, first by treatment of camphor oxime $\mathbf{1}$ with nitrosyl chloride to yield camphor nitrimine and secondly by ammonolysis of the nitrimine to yield the imine. However, the complexity of this procedure was a disadvantage and the singlestep process, described below, was used on the grounds of simplicity.

[^0]

Scheme 1 Possible mechanism for the formation of camphor imine nitrate salt 2a by nitrosation of the oxime.

2a

2a $\mathrm{X}=\mathrm{NO}_{3}$
2b $X=C l$
Scheme 2 Synthesis of camphor imine salt ($\mathbf{2 a}$ and $\mathbf{2 b}$). Reagents and conditions: i, HNO_{2} in $\mathrm{Et}_{2} \mathrm{O}$; ii, $\mathrm{Bu}_{3}{ }_{3} \mathrm{P}$, PhSSPh in THF; iii, HNO_{3} or HCl in $\mathrm{Et}_{2} \mathrm{O}$.

Barton, Motherwell, Simon and Zard ${ }^{18}$ have shown that ketoximes (particularly steroidal ketoximes) can be smoothly reduced to imines using the mild reagent tri- n-butylphosphinediphenyl disulfide under essentially neutral conditions. The free imines were not isolated but were trapped in situ as the diacetylenamine, the amine, or the amino nitrile. The reagent is self drying, thereby protecting the labile imine against premature hydrolysis. Accordingly, (R, R)-camphor oxime 1 and diphenyl disulfide in dry tetrahydrofuran (THF) were treated with tri- n-butylphosphine under an inert atmosphere at room temperature. After 2.5 h , anhydrous nitric acid in diethyl ether was added to afford long, white, needle-shaped crystals of the pure target (R, R)-camphor imine nitrate salt $\mathbf{2 a}$ in excellent yield (Scheme 2). In later work the nitric acid in diethyl ether was replaced by dry hydrogen chloride in diethyl ether, since the latter reagent is less hazardous to prepare. Thus fine, white, needle-shaped crystals of (R, R)-camphor imine chloride salt $\mathbf{2 b}$ was obtained in excellent yield.

Regeneration of camphor imine 3 from the salt was easily accomplished, prior to reaction with the α-amino acid ester salt (see below), by rapidly extracting an aqueous solution just basified with ammonia with diethyl ether or dichloromethane (DCM) and rapidly drying the organic phase.

Transimination

The target $(S)-\alpha$-amino acid ketimines 5 were readily prepared in very good yield by stirring a molar equivalent of the finely ground (S)-amino acid ester hydrochloride 4 with the dry organic solution of (R, R)-camphor imine $\mathbf{3}$ for $50-70 \mathrm{~h} \ddagger$ at room temperature under an inert atmosphere. A co-solvent such as

[^1]methanol, ethanol or DCM can be used to improve the solubility of the amino acid ester hydrochloride. A wide range of α-amino acid derivatives 5 was prepared (Scheme 3): these are listed in Table 1. The mechanism of the reaction based on analogy is shown in Scheme 4.

Scheme 3 Synthesis of camphorylidene α-amino acid esters 5 and subsequent reduction to the corresponding secondary amines 6 [see Table 1 for the definition of R^{1} and R^{2}]. Reagents and conditions: i, $\mathrm{Et}_{2} \mathrm{O}$ plus co-solvent ($\mathrm{MeOH}, \mathrm{EtOH}$ or DCM), $50-70 \mathrm{~h}, 23^{\circ} \mathrm{C}$; ii, $\mathrm{NaBH}_{3}(\mathrm{CN})$ in $\mathrm{MeOH}, \mathrm{pH}<4,4$ days, $23^{\circ} \mathrm{C}$.

Scheme 4 Presumptive mechanism for the transimination.
The target camphorylidene α-amino esters 5 can potentially exist as E or Z geometric isomers about the $\mathrm{C}=\mathrm{N}$ bond. However, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the derivatives reveal that only one isomer is present. NOE difference studies with ethyl (R, R)-camphorylidene glycinate 5a and methyl (R, R) -

Table 1 List of camphorylidene α-amino acid esters prepared

Compound	Camphor derivative	Amino ester hydrochloride	R^{1}	R^{2}	Yield (\%)
5a	R,R	Glycine	H	Et	76
5b	R,R	S-Alanine	CH_{3}	Me	71
5c	R, R	S-Valine	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	Me	62
5d	R,R	S-Leucine	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	Me	45
5e	R,R	S-Isoleucine	$\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$	Me	65
5 f	R,R	S-Serine	$\mathrm{CH}_{2} \mathrm{OH}$	Me	66
5g	R,R	S-Glutamic acid	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Et	76
5h	R, R	S-Methionine	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}$	Me	67
5 i	R,R	S-Phenylalanine	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Me	68
5 j	R, R	S-Phenylalanine	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Bzl	68
5k	R,R	S-Phenylalanine	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{Bu}^{\text {t }}$	70
51	R, R	R-Phenylalanine	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Bu^{t}	69
5m	R, R	S-Tyrosine	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$	Me	70
50	\pm)	Glycine	H	Et	63
5p	$\pm \pm$	S-Leucine	$\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	Me	18
5q	\pm)	S-Glutamic acid	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	Et	66
5 r	(\pm)	S-Methionine	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{3}$	Me	46
5s	R,R	(\pm)-Phenylalanine	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Me	72

5a

5k

Fig. 1 Principal NOE difference data ($\%$ enhancement) for compounds 5a, 5i, 5k, and $\mathbf{6 a}$.
camphorylidene-($(S$)-phenylalaninate $\mathbf{5 i}$ show conclusively that the geometry is E. This is summarised in Fig. 1. These findings are consistent with the results of Bolton, Danks and Paul, ${ }^{7}$ McIntosh and Mishra ${ }^{12}$ and of Forni, Moretti and Torre. ${ }^{19}$
The mild conditions of the transimination reaction make it unlikely that the stereochemical integrity of the amino acid ester component is impaired. That this is the case was shown by the fact that the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the camphor α-amino ester conjugates 5 show the absence of signals due
to diastereomeric nuclei (methyl camphorylidene isoleucinate 5 e is particularly useful in this regard ${ }^{20}$), and by experiments in which the amino acid ester was recovered with unchanged specific optical rotation from hydrolysis reactions. ${ }^{12,13}$

Direct in situ capture of the camphor imine 3, during its generation by oxime reduction, by an amino ester hydrochloride $\mathbf{4}$ in a 'one-pot' process could produce a further simplification to the procedure. Orientation experiments showed that no camphorylidene amino acid derivative $\mathbf{5 a}$ was produced when glycine ethyl ester hydrochloride $\mathbf{4 a}$ was added to the reaction mixture containing preformed (R, R)-camphor imine 3.§ It appears that the amino ester is being captured by one or more components in the reaction mixture. Exploratory ${ }^{1} \mathrm{H}$ NMR experiments were conducted by treating glycine ethyl ester in CDCl_{3} with various combinations of the reactants. It was established that there was a significant change in the spectrum of the ester only when both tributylphosphine and diphenyl disulfide were present.

Accordingly the $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra of a mixture of glycine ethyl ester (1 equiv.), tributylphosphine (4 equiv.) and diphenyl disulfide (4 equiv.) was studied over a 14 h time course. The data showed that the intensity of the glycine $\alpha-\mathrm{CH}_{2}$ resonance at $\delta_{\mathrm{H}} 3.20$ decreased in parallel with the appearance and increase of a doublet at $\delta_{\mathrm{H}} 3.65$ (total combined integration remained at 2 throughout). Another new broad signal integrating for two protons was observed at $\delta_{\mathrm{H}} 2.63$ which progressively shifted with further broadening to $\delta_{\mathrm{H}} 4.25$. The protons responsible for this signal underwent $\mathrm{D}_{2} \mathrm{O}$-exchange and were identified as the SH protons of PhSH by comparison. In addition, the phenyl group proton signals broadened and progressively moved upfield by 0.25 ppm over the course of the experiment, and towards the end of the experiment the signals attributable to the ethyl ester doubled.
The spectroscopic data indicate that the amino group of the amino ester has undergone reaction with the equilibrating phosphorane to yield a compound which can be formulated as 7 or 8 . There is insufficient evidence to distinguish between these two possibilities. Therefore, in order to secure the synthesis of camphorylidene α-amino esters 5 it is necessary to isolate the preformed camphor imine prior to reaction with the α-amino ester. $\boldsymbol{\|}$
§ Some polyglycinate was formed.

- Use of a scavenger to remove the phosphorane was not entertained owing to the complexity of the reaction mixture. However, in future work a solid-phase scavenger might well be explored.

Table $2{ }^{1} \mathrm{H}$ NMR shielding data for the aromatic camphorylidene adducts $\mathbf{5 i} \mathbf{- m}$

Compound	Amino ester	3-exo	C-8 CH_{3}	3 -endo	C-9 CH_{3}	$\mathrm{C}-10 \mathrm{CH}_{3}$
$\begin{aligned} & 5 a \\ & 5 i \end{aligned}$	Gly-OEt	2.25	0.72	1.74	0.86	0.93
	S-Phe-OMe	1.90	0.17	1.77	0.82	0.93
	Δ (ppm)	0.35	0.55	-0.03	0.04	0
5 j	S-Phe-OBzl	1.92	0.19	1.76	0.82	0.95
	Δ (ppm)	0.33	0.53	-0.02	0.04	-0.02
5k	S-Phe-OBu ${ }^{t}$	1.93	0.19	1.81	0.82	0.95
	Δ (ppm)	0.32	0.53	-0.07	0.04	-0.02
51	R-Phe-OBu ${ }^{t}$	2.19	0.71	1.07	0.83	0.95
	Δ (ppm)	0.06	0.01	0.67	0.03	-0.02
5m	S-Tyr-OMe	1.99	0.27	1.82	0.83	0.97
	Δ (ppm)	0.26	0.45	-0.08	0.03	-0.04

Camphor is differentially solvated by aromatic solvents. In the ${ }^{1} \mathrm{H}$ NMR spectrum this is manifest by the observation of a marked upfield shift of the methyl groups at positions 8 and $9 .{ }^{21}$ It was therefore of interest to look for such an effect in the spectra of the camphorylidene derivatives of the aromatic α-amino esters $\mathbf{5 i - 5 m}$. Indeed, the (R, R)-camphor ketimines of the aromatic (S)-amino esters $\mathbf{5 i} \mathbf{- 5 k}$ and $\mathbf{5 m}$ do show a marked shielding of the resonance due to the 8 -methyl group and of the 3 -exo hydrogen. The data are shown in Table 2 using ethyl camphorylideneglycinate 5a for comparison.

The magnitude of the shielding effect on the C-8 methyl group ($\approx 0.5 \mathrm{ppm}$) and on the 3 -exo proton ($\approx 0.3 \mathrm{ppm}$) indicates that in the (S)-amino ester series the side-chain aromatic ring is virtually locked in position, the predominant rotamer being that shown for $\mathbf{5 k}$ in Fig. 2. This is confirmed by the observation of an NOE at the aromatic protons on irradiation of the C-8 methyl group (Fig. 1, compounds $\mathbf{5 i}$ and $\mathbf{5 k}$) and by molecular mechanics using geometry optimisation, followed by molecular dynamics both using the MM2 program in CS Chem3D. It is noteworthy that the (R)-phenylalanine ester $\mathbf{5 1}$ does not show the shielding effect on the C-8 methyl group experienced in the S-series, instead the 3 -endo proton is strongly shielded ($\approx 0.7 \mathrm{ppm}$). Thus the principal rotamer in this case is likely to be that shown in Fig. 2, and this was confirmed by molecular modelling.

These observations provide a simple tool for assigning the configuration to aromatic amino acids produced by asymmetric alkylation of tert-butyl camphorylideneglycinate $\mathbf{5 n}$. For instance, the compound produced by benzylation of the above mentioned glycinate ${ }^{12}$ is undoubtedly the R-configurated material (5I) on the basis of the spectroscopic correlations discussed above (Scheme 5). Indeed, the method discussed in this paper will enable the provision of chiral standards for

5k

51

Fig. 2 The results of MM2 molecular modelling on compounds $\mathbf{5 k}$ and $\mathbf{5 l}$ using geometry optimisation, followed by molecular dynamics.

Table 3 List of N-exo-bornan-2-yl α-amino acid esters 6 prepared

	Starting camphor- ylidene amino			Yield Compound ester hydrochloride
$\mathbf{6 a}$	R^{1}	R^{2}	Glycin	H
$\mathbf{6 b}$	S-Alanine	CH_{3}	50	
$\mathbf{6 e}$	S-Isoleucine	$\mathrm{CH}_{\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}}$	Me	45
$\mathbf{6 i}$	S-Phenylalanine	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Me	48
$\mathbf{6 k}$	S-Phenylalanine	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	Bu^{t}	45

Scheme 5 Asymmetric alkylation of tert-butyl camphorylideneglycinate 5n. Reagents and conditions: i, LDA in THF, $15 \mathrm{~min},-78^{\circ} \mathrm{C}$; ii, HMPA, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$, several hours, $-78^{\circ} \mathrm{C}$.
determining the absolute configuration of diastereomeric amino acid conjugates resulting from the asymmetrically induced alkylation, ${ }^{12,22,23}$ allylation ${ }^{12,22,23}$ or Michael reaction ${ }^{23,24}$ of tert-butyl camphorylideneglycinate $\mathbf{5 n}$ and similar substrates.

It is of interest to test whether the transimination reaction is capable of chiral descrimination. Accordingly, (R, R)-camphor imine was treated with various racemic amino acid esters and $(\pm$-camphor imine was treated with various (S)-amino acid esters. The 'purified' mixture of diastereomeric products was subjected to ${ }^{1} \mathrm{H}$ NMR spectroscopy, which revealed (within the accuracy of integration) a composition of 50% for each diastereomer. Therefore no asymmetric induction was detected. This seems to be reasonable, since the transimination reaction involves equilibration (Scheme 4). It is clear that in future work the ammonia produced as co-product should be removed completely, so that the reaction becomes essentially irreversible; under these conditions such kinetic resolution might be achieved.

Further characterisation of the camphorylidene amino esters 5 was sought and this was accomplished by sodium cyanoborohydride reduction, ${ }^{25}$ at an apparent pH of 4 , to the corresponding secondary amines. A selection of α-amino acid derivatives $\mathbf{6}$ was prepared (Scheme 3): these are listed in Table 3. It is to be expected that axial hydride attack will occur largely from the endo-face to produce the exo-amine ${ }^{2,26}$ and this has been confirmed by NOE studies on ethyl $N-[(1 R, 4 R)$-bornan-2yllglycinate $6 \mathbf{a}$ which are summarised in Fig. 1. However, the literature indicates that the stereochemistry of the reduction is complex: ${ }^{7,27}$ the facial selectivity is dependent on the nature of the reductant and the configuration at the α-carbon atom of the amine.

Conclusions

An improved method has been developed for the efficient conversion of camphor oxime 1 into stable camphor imine salts 2. (R, R)-Camphor imine 3 undergoes simple transimination with α-amino acid ester hydrochlorides 4 to yield camphorylidene amino acid derivatives 5 with E stereochemistry about the $\mathrm{C}=\mathrm{N}$ double bond. Sodium cyanoborohydride reduction of the camphorylidene (S)-amino ester derivatives 5 gives exobornylamines 6 .

Experimental

General

Mps were determined with an Electrothermal capillary apparatus and are uncorrected. Optical rotations ($[a]_{D}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{-2} \mathrm{~g}^{-1}$) were measured on an Optical Activity AA-1000 polarimeter using a 1 dm path-length micro cell. Mass spectra were recorded on a Kratos Profile HV3 instrument (EI [or LSIMS, using m-nitrobenzyl alcohol as the matrix]) or a VG ZAB-E instrument. NMR spectra were recorded on an Brüker ACF 300 MHz machine, with tetramethylsilane as the reference: ${ }^{1} \mathrm{H}$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75 MHz with broad-band decoupling. J-Values are given in Hz . Homonuclear shift-correlated 2D spectra were used to identify three- and four-bond coupling using the standard Brüker microprogram COSY.AU. Heteronuclear shift-correlated 2D spectra were used to assign proton/carbon resonances using the standard Brüker microprogram XHCORR.AU.

TLC was carried out on Merck Kieselgel GF $_{254}$ plates. Column chromatography was carried out using Merck silica gel 60 H . All solvents were purified following standard literature methods. Light petroleum refers to the fraction boiling in the range $40-60^{\circ} \mathrm{C}$ except where stated otherwise.

Preparation of anhydrous nitric acid in anhydrous diethyl ether

Colourless fuming nitric acid $(95 \% \mathrm{w} / \mathrm{v}$, specific gravity $\approx 1.5)$ was distilled over sulfuric acid in vacuo as described in the literature. ${ }^{28}$ CAUTION: Anhydrous nitric acid was added very cautiously dropwise to stirred anhydrous diethyl ether at $-4^{\circ} \mathrm{C}$. The addition was interrupted if the mixture began to decrepitate and further cooling was applied before continuing. In this way a $0.5-1.0 \mathrm{M}$ solution was prepared.

Molecular modelling was performed using molecular mechanics using geometry optimisation, followed by molecular dynamics both using the MM2 program in Cambridge Soft Chem3D version 5.0. The parameters used in the molecular dynamics were: step interval 2.0 fs , frame interval 10.0 fs , heating/cooling rate 4.184 kJ atom ${ }^{-1} \mathrm{ps}^{-1}$ and target temperature 300 K and trajectory 4.0 ps . The computation on $\mathbf{5 k}$ terminated with a steric energy of $401.45 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that of $\mathbf{5 l}$ with a steric energy of $392.16 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Spectroscopic data for camphor

The spectroscopic correlations for (\pm)-camphor are listed below for use in the assignment of the camphor skeleton in the compounds reported. Asymmetric solvation of camphor by aromatic solvents gave rise to chemical-shift changes of diagnostic importance. These results and NOE-difference studies on camphor matched previously published results. ${ }^{21,29}$
(\pm)-Camphor. $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3476,2962$ and 2737, 1740 ($\mathrm{C}=\mathrm{O}$ str), $1448,1390,1372 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.67(3 \mathrm{H}, \mathrm{s}$, C-8 Me), 0.73 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}$), 0.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}$), 1.12-1.28 $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right.$ and $\left.6-\mathrm{H}_{\text {endo }}\right), 1.44-1.57\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\text {exo }}\right), 1.66$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3-\text { endo } 3 \text {-exo }} 18.1,3-\mathrm{H}_{\text {endo }}\right), 1.73-1.86\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{exo}}\right), 1.92$ $\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3-\mathrm{ex}}\right.$ and $\left.{ }^{3} J_{4,5 \text {-exo }} 4.8,4-\mathrm{H}\right), 2.17$ (1 H , overlapping ddd, $\left.{ }^{2} J_{3 \text {-exo }, 3 \text {-endo }} 18.1,{ }^{3} J_{3 \text {-exo }, 4} 4.8,{ }^{4} J_{3 \text {-exo, } 5 \text {-exo }} 4.0,3-\mathrm{H}_{\mathrm{exo}}\right) ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) 0.59(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.64(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.87(3 \mathrm{H}, \mathrm{s}$,
$\mathrm{C}-10 \mathrm{Me}), 0.91-1.00\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{5 \text {-endo, } 5 \text {-exo }} 12.4$, $\left.{ }^{3} J_{5 \text {-endo, } 6 \text {-endo }} 9.3,{ }^{3} J_{5 \text {-endo, } 6 \text {-exo }} 4.2,5-\mathrm{H}_{\text {endo }}\right), 1.12-1.22(1 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{6 \text {-endo, } 6 \text {-exo }} 13.5,{ }^{3} J_{6 \text {-endo, } 5 \text {-endo }} 9.3,{ }^{3} J_{6 \text {-endo, } 5 \text {-exo }} 4.6,6$ $\mathrm{H}_{\text {endo }}$), 1.28-1.39 (1H, overlapping dddd [appears as a complex $\mathrm{dt}],{ }^{2} J_{6 \text {-exo, } 6 \text {-endo }} 13.5,{ }^{3} J_{6 \text {-exo }, 5 \text {-exo }} 11.0,{ }^{3} J_{6 \text {-exo }, 5 \text {-endo }} 4.2,{ }^{5} J_{6 \text {-exo, } 3 \text {-exo }}$ $0.9,6-\mathrm{H}_{\text {exo }}$), $1.51-1.62\left(2 \mathrm{H}\right.$, overlapping d and $\mathrm{m},{ }^{2} J_{3 \text {-endo }, 3 \text {-exo }}$ $18.0,3-\mathrm{H}_{\text {endo }}$, and ${ }^{2} J_{5 \text {-exo, } 5 \text {-endo }} 12.4,{ }^{3} J_{5 \text {-exo }, 6 \text {-exo }} 11.0,{ }^{3} J_{5 \text {-exo }, 4} 4.8$, $\left.{ }^{3} J_{5 \text {-exo, } 6 \text {-endo }} 4.6,5-\mathrm{H}_{\text {exo }}\right), 1.64\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and ${ }^{3} J_{4,5 \text {-exo }} 4.8$, $4-\mathrm{H}), 2.09$ (1 H , overlapping ddd, ${ }^{2} J_{3 \text {-exo, } 3 \text {-endo }} 18.0,{ }^{3} J_{3 \text {-exo } 4} 4.8$, $\left.{ }^{4} J_{3 \text {-exo, } 5 \text {-xx }} 3.8,{ }^{5} J_{3 \text {-exo. } 6 \text {-exo }} 0.9,3-\mathrm{H}_{\text {exo }}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.1$ (C-10), 19.0 (C-9), 19.6 (C-8), 26.9 (C-5), 29.8 (C-6), 42.9 (C-4), 43.1 (C-3), 46.6 (C-7), 57.4 (C-1), 218.8 (C=O); δ_{C} (75.5 MHz ; $\mathrm{C}_{6} \mathrm{D}_{6}$) 9.6 (C-10), 19.1 (C-9), 19.7 (C-8), 27.3 (C-5), 30.1 (C-6), 43.2 (C-3), 43.3 (C-4), 46.5 (C-7), 57.3 (C-1), 216.3 (C=O).

NOE difference $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ irradiation at $\delta 0.59 \mathrm{C}-8 \mathrm{Me}$ (enhances signal at $\delta 0.87 \mathrm{C}-10 \mathrm{Me}$ by $+1.7 \%, \delta 2.093-\mathrm{H}_{\mathrm{exo}}$ $+1.85 \%)$, $0.87 \mathrm{C}-10 \mathrm{Me}(0.59 \mathrm{C}-8 \mathrm{Me}+1.4 \%, 0.64 \mathrm{C}-9 \mathrm{Me}$ $+1.4 \%), 0.91-1.00 \quad 5-\mathrm{H}_{\text {endo }}\left(1.51-1.64 \quad 3-\mathrm{H}_{\text {endo }}, 4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}\right.$ $+4.9 \%), 1.12-1.226-\mathrm{H}_{\text {endo }}(0.87 \mathrm{C}-10 \mathrm{Me}+0.8 \%, 0.91-1.00$ $\left.5-\mathrm{H}_{\text {endo }}+1.7 \%, 1.28-1.396-\mathrm{H}_{\text {exo }}+6.2 \%\right), 1.28-1.396-\mathrm{H}_{\text {exo }}(0.64$ $\mathrm{C}-9 \mathrm{Me}+1.65 \%$, $0.87 \mathrm{C}-10 \mathrm{Me}+0.8 \%$, $1.12-1.226-\mathrm{H}_{\text {endo }}$ $+4.5 \%), 1.51-1.62 \quad 3-\mathrm{H}_{\text {endo }}$ and $5-\mathrm{H}_{\text {exo }}\left(0.91-1.00 \quad 5-\mathrm{H}_{\text {endo }}\right.$ $\left.+7.6 \%, 1.28-1.396-\mathrm{H}_{\text {exo }}+3.5 \%, 2.093-\mathrm{H}_{\text {exo }}+7.0 \%\right), 1.644-\mathrm{H}$ ($0.59 \mathrm{C}-8 \mathrm{Me}+1.5 \%, 0.64 \mathrm{C}-9 \mathrm{Me}+1.85 \%), 2.093-\mathrm{H}_{\text {exo }}(0.59$ $\mathrm{C}-8 \mathrm{Me}+2.0 \%, 1.51-1.623-\mathrm{H}_{\text {endo }}$ and $\left.5-\mathrm{H}_{\text {exo }}+7.0 \%\right)$.
(\pm)-Thiocamphor. (\pm)-Camphor ($1.52 \mathrm{~g}, 10 \mathrm{mmol}$) and Lawesson's reagent ${ }^{30} \|(2.43 \mathrm{~g}, 6 \mathrm{mmol})$ were refluxed in anhydrous benzene $\left(15 \mathrm{~cm}^{3}\right)$ for 12 h . The resulting orange solution was filtered, the filtrate evaporated to dryness in vacuo, and the residue purified by flash chromatography (light petroleum-DCM [95: 5]). Combination and concentration of the appropriate product fractions gave the desired (\pm)-thiocamphor (0.96 g , 57%) as bright orange crystals, mp $145-146^{\circ} \mathrm{C}$ (lit., ${ }^{31} 145-$ $\left.146^{\circ} \mathrm{C}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3409 \mathrm{w}, 2959 \mathrm{~s}, 1445 \mathrm{~m}, 1413 \mathrm{~m}, 1388 \mathrm{~m}$, $1309 \mathrm{~m}, 1277 \mathrm{~m}, 1211 \mathrm{~m}, 1191 \mathrm{w}, 1130 \mathrm{~m}\left(\mathrm{C}=\mathrm{S}\right.$ str); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.78$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}$), 1.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}$), 1.08 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}-10 \mathrm{Me}), 1.22-1.41\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right.$ and $\left.6-\mathrm{H}_{\text {endo }}\right), 1.69-1.80$ $\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\text {exo }}\right), 1.93-2.05\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {exo }}\right), 2.15\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and $\left.{ }^{3} J_{4,5-\text {-exo }} 4.2,4-\mathrm{H}\right), 2.39\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo } 3 \text {-exo }} 20.5,3-\mathrm{H}_{\text {endo }}\right)$, $2.71-2.82\left(1 \mathrm{H}, \mathrm{dm},{ }^{2} J_{3 \text {-exo }, 3 \text {-endo }} 20.5,3-\mathrm{H}_{\text {exo }}\right) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; CDCl_{3}) 13.1 (C-10), 19.6 (C-9), 19.8 (C-8), 27.2 (C-5), 33.9 (C-6), 45.1 (C-4), 48.9 (C-7), 55.5 (C-3), 69.2 (C-1), 193.7 (C=S).

Camphor imine 3 and its precursors

Camphor oxime 1. A solution of hydroxylamine hydrochloride ($2.09 \mathrm{~g}, 30 \mathrm{mmol}$) and sodium acetate $(1.97 \mathrm{~g}, 24$ mmol) in water ($18 \mathrm{~cm}^{3}$) was treated with a solution of $(\pm$-camphor or (R, R)-camphor ($3.04 \mathrm{~g}, 20 \mathrm{mmol}$) in ethanol (7 cm^{3}) and the mixture was heated at $60^{\circ} \mathrm{C}$ for 15 h . The resulting clear solution was concentrated in vacuo until crystals of camphor oxime began to form. The suspension was set aside at $4^{\circ} \mathrm{C}$ to complete the crystallisation and the product was collected by suction filtration and dried over CaCl_{2} in vacuo. $\mathrm{TLC}\left(\mathrm{CHCl}_{3}\right)$ confirmed that both products were pure.
($\boldsymbol{R}, \boldsymbol{R}$)-Camphor oxime 1. (R, R)-Camphor oxime (3.30 g , 99%) was obtained as white crystals, mp 118-119 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{32}$ $\left.115^{\circ} \mathrm{C}\right)$; $[a]_{\mathrm{D}}^{25.5}-36.8\left(c 10\right.$ in EtOH) $\left\{\mathrm{lit} . .^{32}[a]_{\mathrm{D}}-41.4\right.$ (c 12 in $\mathrm{EtOH})\} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3284 \mathrm{~s}$ br (OH str), $2975 \mathrm{~s}, 1687 \mathrm{~m}(\mathrm{C}=\mathrm{N}$ str), 1447s, 1391s, 1376s, $1191 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.77$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}$), 0.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}$), 0.98 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}$), $1.15-1.26\left(1 \mathrm{H}\right.$, complex overlapping ddd, $\left.5-\mathrm{H}_{\text {endo }}\right), 1.36-1.48$ (1 H , overlapping ddd, $6-\mathrm{H}_{\text {endo }}$), $1.60-1.72\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{6 \text {-exo }, 6 \text {-endo }}\right.$ $12.0,{ }^{3} J_{6 \text {-exo }, 5 \text {-endo }}$ and $\left.{ }^{3} J_{6 \text {-exo,5-exo }} 4.2,6-\mathrm{H}_{\text {exo }}\right), 1.74-1.86(1 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}_{\text {exo }}\right), 1.88\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3-\mathrm{exo}}\right.$ and $\left.{ }^{3} J_{4,5-\mathrm{exo}} 4.2,4-\mathrm{H}\right), 2.02(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{2} J_{3 \text {-endo, } 3 \text {-exo }} 17.5,3-\mathrm{H}_{\text {endo }}\right), 2.52\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{3 \text {-exo, } 3 \text {-endo }}$

[^2]$\left.17.5,{ }^{3} J_{3 \text {-exo } 4} 4.2,{ }^{4} J_{3 \text {-exo } 0 \text {-exo }} 3.5,3-\mathrm{H}_{\mathrm{exo}}\right), 8.98(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.1(\mathrm{C}-10), 18.5(\mathrm{C}-9), 19.4(\mathrm{C}-8), 27.2$ (C-5), 32.6 (C-6), 33.1 (C-3), 43.7 (C-4), 48.3 (C-7), 51.8 (C-1), $169.7(\mathrm{C}=\mathrm{N})$.
(\pm)-Camphor oxime 1. (\pm)-Camphor oxime ($3.14 \mathrm{~g}, 94 \%$) was obtained as white crystals, mp 117-119 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{17,33} 118-119{ }^{\circ} \mathrm{C}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3283 \mathrm{br} \mathrm{s}(\mathrm{OH} \operatorname{str}), 2961 \mathrm{~s}, 1686 \mathrm{~m}(\mathrm{C}=\mathrm{N}$ str), $1475 \mathrm{~s}, 1445 \mathrm{~s}, 1392 \mathrm{~s}, 1376 \mathrm{~s}, 1302 \mathrm{~s}, 1201 \mathrm{~m}, 1193 \mathrm{~m}, ~ 923 \mathrm{~s} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.91(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 1.00$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.18-1.28\left(1 \mathrm{H}\right.$, overlapping ddd, $\left.5-\mathrm{H}_{\text {endo }}\right)$, $1.41-1.50\left(1 \mathrm{H}\right.$, overlapping ddd, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.70(1 \mathrm{H}, \mathrm{dt}$, ${ }^{2} J_{6 \text {-exo, } 6 \text {-endo }} 12.0,{ }^{3} J_{6 \text {-exo, } 5 \text {-endo }}$ and $\left.{ }^{3} J_{6 \text {-exo, } 5 \text {-exo }} 4.0,6-\mathrm{H}_{\text {exo }}\right), 1.77-1.89$ $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{exo}}\right), 1.91\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and $\left.{ }^{3} J_{4,5-\text { exo }} 4.3,4-\mathrm{H}\right), 2.05$ $\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo } 3 \text {-exo }} 17.8,3-\mathrm{H}_{\text {endo }}\right), 2.55(1 \mathrm{H}$, overlapping ddd, $\left.{ }^{2} J_{3 \text {-exo,3-endo }} 17.8,{ }^{3} J_{3 \text {-exo, } 4} 4.3,{ }^{4} J_{3 \text {-exo,5-exo }} 3.5,3-\mathrm{H}_{\text {exo }}\right), 8.60(1 \mathrm{H}$, br, $\mathrm{OH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.1(\mathrm{C}-10), 18.5(\mathrm{C}-9), 19.4(\mathrm{C}-8)$, 27.3 (C-5), 32.6 (C-6), 33.1 (C-3), 43.7 (C-4), 48.3 (C-7), 51.9 (C-1), $170.0(\mathrm{C}=\mathrm{N})$.

Camphor imine nitrate salt 2a. Camphor imine nitrate salt was prepared by an adaptation of the procedure of Barton, Motherwell, Simon and Zard (Procedure A) ${ }^{18}$ and by a modification of the method of Mahla and Tiemann (Procedure B). ${ }^{15}$

Procedure A.-Tri-n-butylphosphine ($93.4 \mathrm{~cm}^{3}, 379 \mathrm{mmol}$) was added to a solution of (R, R)-camphor oxime $1(15.78 \mathrm{~g}, 94$ mmol) and diphenyl disulfide ($41.92 \mathrm{~g}, 192 \mathrm{mmol}$) in dry THF $\left(450 \mathrm{~cm}^{3}\right)$ under an inert atmosphere and the solution stirred at ambient temperature for 2.5 h . Anhydrous nitric acid in dry diethyl ether** (approximately $0.5-1.0 \mathrm{M}$) was added dropwise to the reaction mixture, whereupon white crystals of the camphor imine nitrate salt began to separate. The addition of the nitric acid solution was continued until no more crystallisation occurred. The crystals were collected by suction filtration, washed well with dry diethyl ether, and dried in vacuo over CaCl_{2}.
(R, R)-Camphor imine nitrate salt 2a.- (R, R)-Camphor imine nitrate salt $\mathbf{2 a}(20.24 \mathrm{~g}, 99 \%)$ was obtained as fine, white, needle-shaped crystals, $\mathrm{mp} 158-159^{\circ} \mathrm{C}$ (lit., ${ }^{15} 158-159{ }^{\circ} \mathrm{C}$); $[\alpha]_{\mathrm{D}}^{27}$ $-42.0(c 0.84$ in EtOH$) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300-2700 \mathrm{br} \mathrm{s}(\mathrm{N}-\mathrm{H}$ str), 2964s, 2875s, 1685s ($\mathrm{C}=\mathrm{N}$ str), 1440-1350br s, 1307s, $1210 \mathrm{~m}, 1197 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 1.03$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.37-1.45(1 \mathrm{H}, \mathrm{m}$, $\left.5-\mathrm{H}_{\text {endo }}\right), 1.52-1.64\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\text {endo }}\right), 1.90-2.01\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{exo}}\right.$, $\left.6-\mathrm{H}_{\mathrm{exo}}\right), 2.17\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and $\left.{ }^{3} J_{4,5-\text { exo }} 4.0,4-\mathrm{H}\right), 2.58(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{2} J_{3 \text {-endo }, 3 \text {-exo }} 20.2,3-\mathrm{H}_{\text {endo }}\right)$, $3.0\left(1 \mathrm{H}\right.$, ddd, ${ }^{2} J_{3 \text {-exo, } 3 \text {-endo }} 20.2,{ }^{3} J_{3 \text {-exo }, 4}$ 4.0 and $\left.{ }^{4} J_{3 \text {-exo, } 5 \text {-exo }} 1.5,3-\mathrm{H}_{\text {exo }}\right), 11.9(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$ and $12.4(1 \mathrm{H}$, $\mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.4(\mathrm{C}-10), 18.4$ (C-9), 19.6 (C-8), 26.1 (C-5), 31.8 (C-6), 38.6 (C-3), 43.4 (C-4), 49.9 (C-7), 57.7 (C-1), $208.0(\mathrm{C}=\mathrm{N})$.

Procedure B.- (\pm)-Camphor oxime or (R, R)-camphor oxime $1(30.05 \mathrm{~g}, 180 \mathrm{mmol})$ in dry diethyl ether $\left(250 \mathrm{~cm}^{3}\right)$ was treated successively with three portions of cold nitrous acid in 'dried' diethyl ether prepared as described below. Sodium nitrite $(25.02 \mathrm{~g}, 360 \mathrm{mmol})$ in water $\left(50 \mathrm{~cm}^{3}\right)$, layered with diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$ and cooled to $0^{\circ} \mathrm{C}$ in a separating funnel, was treated with 2 M aq. sulfuric acid ($24.5 \mathrm{~cm}^{3}$, 49 mmol) and the mixture was swirled gently. The lower aqueous layer was removed and the upper, pale yellow organic layer was filtered through a cotton wool plug into the ethereal oxime solution. The separated aqueous layer was re-treated with sulfuric $\operatorname{acid}\left(24.5 \mathrm{~cm}^{3}, 49 \mathrm{mmol}\right)$, extracted with diethyl ether $\left(100 \mathrm{~cm}^{3}\right)$, and the separated organic phase was filtered as before into the ethereal reaction mixture. This process was repeated once more.

[^3]The addition of nitrous acid to the oxime solution gave a deep red solution from which fine, white crystals of camphor imine nitrate salt 2a separated. The mixture was kept at $0^{\circ} \mathrm{C}$ for 20 min and the crystals were filtered off from the pale blue supernatant liquor, washed well with dry diethyl ether, and dried in vacuo over CaCl_{2}.
(R, R)-Camphor imine nitrate salt 2a.- (R, R)-Camphor imine nitrate salt ($8.88 \mathrm{~g}, 23 \%$) was obtained as fine, white, needle-shaped crystals, mp 158-159 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{15} 158-159{ }^{\circ} \mathrm{C}$); $[a]_{\mathrm{D}}^{27}$ -42.0 ($c 0.84$ in EtOH); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300-2700 \mathrm{~s}$ (N-H str), $2960 \mathrm{~s}, 2878 \mathrm{~s}, 1702 \mathrm{~s}(\mathrm{C}=\mathrm{N}$ str), 1432s, 1376s, 1311s, 1299s, $1212 \mathrm{~m}, 1196 \mathrm{~m}$.
(\pm)-Camphor imine nitrate salt $\mathbf{2 a}$.-(\pm)-Camphor imine nitrate salt ($8.28 \mathrm{~g}, 21.5 \%$) was obtained as fine, white, needleshaped crystals, $\mathrm{mp} \quad 158-159{ }^{\circ} \mathrm{C}$ (lit., ${ }^{34} 144.5-145^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420-3100 \mathrm{w}$ ($\mathrm{N}-\mathrm{H}$ str), 2966s, 2878s, 1713s $(\mathrm{C}=\mathrm{N} s t r), 1436 \mathrm{~s}, 1386 \mathrm{~s}, 1311 \mathrm{~s}, 1299 \mathrm{~s}, 1212 \mathrm{~m}, 1196 \mathrm{w} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 1.20$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.32-1.42\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right), 1.48-1.60(1 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.85-1.96\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {exo }}, 6-\mathrm{H}_{\text {exo }}\right), 2.12\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and $\left.{ }^{3} J_{4,5 \text {-exo }} 3.5,4-\mathrm{H}\right), 2.53\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3-\text { endo }, 3 \text {-exo }} 20.0,3-\mathrm{H}_{\text {endo }}\right), 3.00$ $\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{3 \text {-exo, } 3 \text {-endo }} 20.0,{ }^{3} J_{3 \text {-exo, } 4} 4.0,3-\mathrm{H}_{\text {exo }}\right), 11.9(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$, $12.3(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 9.3(\mathrm{C}-10), 18.4$ (C-9), 19.5 (C-8), 26.1 (C-5), 31.8 (C-6), 38.6 (C-3), 43.4 (C-4), 49.9 (C-7), $57.7(\mathrm{C}-1), 208.0(\mathrm{C}=\mathrm{N})$.
$(\boldsymbol{R}, \boldsymbol{R})$-Camphor imine hydrochloride salt $\mathbf{2 b}$. (R, R)-Camphor imine hydrochloride salt was prepared either by a modification of Procedure A^{18} used above for the preparation of (R, R) camphor imine nitrate salt or directly from camphor imine itself (Procedure C). ${ }^{15}$

Procedure A.-Tri- n-butylphosphine was added slowly to a solution of (R, R)-camphor oxime $\mathbf{1}$ and diphenyl disulfide in dry THF under an inert atmosphere as described above for the nitrate salt. The solution was stirred at ambient temperature for 2.5 h . Anhydrous hydrogen chloride in dry diethyl ether (approximately 2 M) was added dropwise to the reaction mixture, whereupon white crystals of the camphor imine hydrochloride salt began to separate. The addition of the hydrogen chloride solution was continued until no more crystallisation occurred. The crystals were collected by suction filtration, washed well with dry diethyl ether, and dried in vacuo over anhydrous CaCl_{2}. (R, R)-Camphor imine hydrochloride salt 2b (86%) was obtained as fine, white, needle-shaped crystals, $\mathrm{mp} 327-328^{\circ} \mathrm{C}$ (lit., ${ }^{15}$ records sublimation without melting) [Found: $m / z(\mathrm{EI}): \mathrm{M}^{+}, 151.13653, \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}$ (free base) requires $M, 151.13570$, deviation 2.8 ppm$] ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3100-2550 \mathrm{br}$ s ($\mathrm{N}-\mathrm{H}$ str), 2968s, 2774s, 1696s ($\mathrm{C}=\mathrm{N}$ str), $1475 \mathrm{~m}, 1448 \mathrm{~s}$, $1414 \mathrm{~s}, 1394 \mathrm{~m}, 1372 \mathrm{w}, 1214 \mathrm{~m}, 1196 \mathrm{w} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.81$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me})$, $1.27-1.38\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right), 1.42-1.56\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\text {endo }}\right), 1.83-$ $1.99\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{exo}}, 6-\mathrm{H}_{\mathrm{exo}}\right), 2.12\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and ${ }^{3} J_{4,5 \text {-exo }}$ $3.5,4-\mathrm{H}), 2.56\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3-\text { endo, } 3 \text {-exo }} 20.2,3-\mathrm{H}_{\text {endo }}\right), 2.98(1 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{2} J_{3 \text {-exo,3-endo }} 20.2,{ }^{3} J_{3 \text {-exo }, 4} 3.5,3-\mathrm{H}_{\mathrm{exo}}\right), 12.6(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 13.3$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 10.4(\mathrm{C}-10), 18.3$ (C-9), 19.6 (C-8), 26.1 (C-5), 31.9 (C-6), 38.4 (C-3), 43.4 (C-4), 49.8 (C-7), $57.8(\mathrm{C}-1), 206.4(\mathrm{C}=\mathrm{N}) ; m / z(\mathrm{EI}) 151\left(52 \%, \mathrm{M}^{+}\right.$[free base]), 136 (46, $\mathrm{M}-\mathrm{CH}_{3}$), 123 (11), 108 (58, $\mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}$), $95\left(100, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 84(36, \mathrm{M}-67), 68\left(98, \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}^{+}\right), 55$ (39). ${ }^{35}$

Procedure C.-Anhydrous hydrogen chloride in dry diethyl ether (approximately 2 M) was added dropwise to a stirred, dry, concentrated ethereal solution of (R, R)-camphor imine 3 (prepared from camphor imine nitrate $\mathbf{2 a}$ as described below), whereupon white crystals of the camphor imine hydrochloride salt began to separate. The addition of the hydrogen chloride solution was continued until no more crystallisation occurred. The crystals were collected by suction filtration, washed well with dry diethyl ether, and dried in vacuo over $\mathrm{CaCl}_{2 .}(R, R)$ Camphor imine hydrochloride salt $\mathbf{2 b}$ was obtained as fine,
white, needle-shaped crystals, with properties similar to those already reported.
($\boldsymbol{R}, \boldsymbol{R}$)-Camphor imine 3. (R, R)-Camphor imine nitrate 2a or hydrochloride salt $\mathbf{2 b}$ was dissolved in the minimum of water, layered with diethyl ether, and treated with aq. ammonia ($2 \mathrm{M} ; 20 \%$ excess). The free imine was extracted into diethyl ether $(\times 3)$ and the organic phases were pooled, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated cautiously on a rotatory evaporator to give a white solid, camphor imine 3; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3312 br s ($\mathrm{N}-\mathrm{H}$ str), 2963s, 2880s, 1683 m ($\mathrm{C}=\mathrm{N}$ str), 1438 s , $1387 \mathrm{~m}, 1370 \mathrm{~m} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me})$, $1.02(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 1.10(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.40-2.60$ (7 H , complex m of overlapping signals, $3-\mathrm{H}_{2}, 4-\mathrm{H}, 5-\mathrm{H}_{2}$ and $\left.6-\mathrm{H}_{2}\right) \cdot \dagger \dagger$

General procedure for the preparation of camphorylidene α-amino acid ester derivatives

(R, R)-camphor imine nitrate salt $\mathbf{2 a}(1.07 \mathrm{~g}, 5 \mathrm{mmol})$ or the corresponding hydrochloride salt $\mathbf{2 b}(0.94 \mathrm{~g}, 5 \mathrm{mmol})$ was dissolved in water ($10 \mathrm{~cm}^{3}$), layered with diethyl ether ($30 \mathrm{~cm}^{3}$), and treated with aq. ammonia ($2 \mathrm{M} ; 3 \mathrm{~cm}^{3}, 6 \mathrm{mmol}, 20 \%$ excess). The layers were equilibrated, separated, and the aqueous phase was extracted with a further portion of diethyl ether. The combined organic phases were pooled, backwashed with cold water $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and reduced in volume to $\approx 10 \mathrm{~cm}^{3}$. The S - or R-amino ester hydrochloride 4 (5 mmol) was added together with a suitable co-solvent (dry $\mathrm{MeOH}, \mathrm{EtOH}$ or $\mathrm{DCM}, 10 \mathrm{~cm}^{3}$). The suspension was stirred at ambient temperature for 2-3 days with the exclusion of moisture $\left(\mathrm{CaCl}_{2}\right.$ guard tube). The precipitate of ammonium chloride which formed was filtered off, and the filtrate cautiously concentrated on a rotatory evaporator to give the crude product. The crude material was purified by flash chromatography ($\mathrm{DCM}-\mathrm{MeOH}, ~ 99: 1$). Combination and concentration of the appropriate product fractions and drying over CaCl_{2} in vacuo gave the desired camphorylidene α-amino ester which was shown to be pure by TLC (DCMMeOH, 99:1).

($\boldsymbol{R}, \boldsymbol{R}$)-Camphorylidene $\boldsymbol{\alpha}$-amino ester derivatives

Ethyl N-[(1R,2E,4R)-bornan-2-ylidene]glycinate ${ }^{12}$ 5a \{ethyl ($[1 R, 2 E, 4 R]-1,7,7$-trimethylbicyclo $[2.2 .1]$ heptan-2-ylidene-
amino)acetate . Ethyl glycinate hydrochloride $4 \mathrm{a}(0.70 \mathrm{~g}, 5$ mmol) was used in the general procedure using DCM $\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, ethyl $N-[(1 R, 2 E, 4 R)$ -bornan-2-ylidene Jglycinate 5a, as a pale yellow oil $(902 \mathrm{mg}$, 76%), $[a]_{\mathrm{D}}^{25.5}-7.04$ (c 0.5 in DCM) [Found: m / z (EI) M ${ }^{+}$, 237.17417. Calc. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2}: M, 237.17288$, deviation 5.45 ppm]; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2962 \mathrm{~s}, 2885 \mathrm{~s}, 1745 \mathrm{~s}(\mathrm{C}=\mathrm{O} \operatorname{str}), 1689 \mathrm{~s}$ ($\mathrm{C}=\mathrm{N}$ str) $, 1475 \mathrm{~m}, 1448 \mathrm{~m}, 1392 \mathrm{~m}, 1373 \mathrm{~s}, 1338 \mathrm{~m}, 1184 \mathrm{~s}$; ${ }^{12}$ $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.72(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.86(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9$ $\mathrm{Me}), 0.93(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.09-1.18(1 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{5 \text {-endo }, 5 \text {-exo }} 16.0,{ }^{3} J_{5 \text {-endo }, 6 \text {-endo }} 9.0$ and $\left.{ }^{3} J_{5 \text {-endo }, 6 \text {-exo }} 4.0,5-\mathrm{H}_{\text {endo }}\right)$, 1.177 and $1.180\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}\right),+1.29-1.39(1 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{6 \text {-endo, } 6 \text {-exo }} 14.5,{ }^{3} J_{6 \text {-endo, } 5 \text {-endo }} 9.0,{ }^{3} J_{6 \text {-endo, } 5 \text {-exo }} 4.0$, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.61\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{6 \text {-exo }, 6 \text {-endo }} 14.5,{ }^{3} J_{6 \text {-exo, } 5 \text {-endo }}\right.$ and ${ }^{3} J_{6 \text {-exo }, 5 \text {-exo }}$ $\left.4.0,6-\mathrm{H}_{\text {exo }}\right), 1.74\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3-\text {-end, } 3 \text {-exo }} 17.0,3-\mathrm{H}_{\text {endo }}\right), 1.73-1.84$ $\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {exo }}\right), 1.88\left(1 \mathrm{H}, \mathrm{t},{ }^{3}{ }_{4,3,- \text { exo }}\right.$ and $\left.{ }^{3} J_{4,5-\text { exo }} 4.0,4-\mathrm{H}\right), 2.25$ $\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{3 \text {-exo }, 3 \text {-endo }} 17.0,{ }^{3} J_{3 \text {-exo, } 4}\right.$ and $\left.{ }^{4} J_{3 \text {-exo }, 5 \text {-exo }} 4.0,3-\mathrm{H}_{\text {exo }}\right), 3.99$
$\dagger \dagger$ The $\mathrm{N}-\mathrm{H}$ proton could not be located as the resolution of this spectrum was poor.
\ddagger The ${ }^{1} \mathrm{H}$ NMR signals of the ethyl ester group are split, presumably due to a conformational effect. Note: the upfield quartet and triplet are of lower intensity than the downfield component; this is in contradistinction to the corresponding behaviour of ethyl (\pm)-camphorylideneglycinate 50 (see below).
and $4.00\left(2 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{NCH}_{2}\right), \S 4.087$ and $4.093(2 \mathrm{H}, \mathrm{q}, J 7.0$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}\right) ;{ }^{12} \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.1$ (C-10), 14.1 (Gly, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 18.9 (C-9), $19.5(\mathrm{C}-8), 27.3(\mathrm{C}-5), 31.9(\mathrm{C}-6), 35.6$ (C-3), 43.8 (C-4), $47.25(\mathrm{C}-7), 53.8\left(\mathrm{Gly}, \alpha-\mathrm{CH}_{2}\right), 54.2(\mathrm{C}-1)$, $60.6\left(\mathrm{Gly}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 170.2(\mathrm{C}=\mathrm{O}), 187.5(\mathrm{C}=\mathrm{N}){ }^{12} \mathrm{~m} / \mathrm{z}(\mathrm{EI})$ $237\left(10 \%, \mathrm{M}^{+}\right), 165$ (16), 164 ($\left.100, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right), 129$ (8), 108 (10, $\mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}$), $95\left(17, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 83$ (23), 69 (9), 55 (9). ${ }^{35}$

NOE difference $\left(\mathrm{CDCl}_{3}\right)$ irradiation at $\delta 0.72 \mathrm{C}-8 \mathrm{Me}$ (enhances signal at $\delta 1.884-\mathrm{H}$ by $+1.05 \%, \delta 2.253-\mathrm{H}_{\text {exo }}+2.6 \%$, $\left.\delta 3.99 \mathrm{NCH}_{2}+0.8 \%\right), 0.86 \mathrm{C}-9 \mathrm{Me}\left(1.616-\mathrm{H}_{\text {exo }}+2.0 \%, 1.73-\right.$ $1.843-\mathrm{H}_{\text {endo }}$ and $\left.5-\mathrm{H}_{\text {exo }}+2.1 \%, 1.884-\mathrm{H}+1.4 \%\right), 0.93 \mathrm{C}-10 \mathrm{Me}$ (1.61 $\left.6-\mathrm{H}_{\text {exo }}+1.5 \%\right), 1.09-1.185-\mathrm{H}_{\text {endo }}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$ (1.73-$1.883-\mathrm{H}_{\text {endo }}, 4-\mathrm{H}$ and $\left.5-\mathrm{H}_{\text {exo }}+12.7 \%\right), 1.29-1.396-\mathrm{H}_{\text {endo }}(1.61$ $\left.6-\mathrm{H}_{\text {exo }}+9.3 \%\right), 1.616-\mathrm{H}_{\text {exo }}\left(1.29-1.396-\mathrm{H}_{\text {endo }}+9.3 \%\right), 1.884-\mathrm{H}$ $\left(1.73-1.843-\mathrm{H}_{\text {endo }}\right.$ and $\left.5-\mathrm{H}_{\text {exo }}+1.3 \%, 2.253-\mathrm{H}_{\text {exo }}+4.3 \%\right), 2.25$ $3-\mathrm{H}_{\text {exo }}\left(1.73-1.843-\mathrm{H}_{\text {endo }}\right.$ and $5-\mathrm{H}_{\text {exo }}+7.0 \%, 1.884-\mathrm{H}+1.9 \%$, $\left.3.99 \mathrm{NCH}_{2}+1.7 \%\right), 3.99 \mathrm{NCH}_{2}\left(1.73-1.843-\mathrm{H}_{\text {endo }}\right.$ and $5-\mathrm{H}_{\text {exo }}$ $\left.+1.3 \%, 2.253-\mathrm{H}_{\text {exo }}+1.5 \%\right)$.

Methyl N-[(1R,2E,4R)-bornan-2-ylidene]-(S)-alaninate 5b (methyl (S)-2'-([1R,2E,4R]-1,7,7-trimethylbicyclo[2.2.1]-heptan-2-ylideneamino)propanoate\}. Methyl (S)-alaninate hydrochloride $\mathbf{4 b}(0.70 \mathrm{~g}, 5 \mathrm{mmol})$ was used in the general procedure using $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, methyl $N-[(1 R, 2 E, 4 R)$-bornan-2-ylidene]-(S)alaninate 5b, as a pale yellow oil ($843 \mathrm{mg}, 71 \%$), $[a]_{\mathrm{D}}^{25.5}-114.7$ (c 0.51 in DCM) [Found: C, 70.3; H, 9.7; N, 5.9. Calc. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, $70.8 ; \mathrm{H}, 9.8 ; \mathrm{N}, 5.9 \%$. Found: m / z (EI) M ${ }^{+}$, 237.17305. Calc. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2}: M, 237.17288$, deviation 0.7 ppm]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2957 \mathrm{~s}, 2875 \mathrm{~s}, 1738 \mathrm{~s}$ (C=O str), 1679 s ($\mathrm{C}=\mathrm{N}$ str), $1475 \mathrm{sh} \mathrm{m}, 1447 \mathrm{~m}, 1391 \mathrm{w}, 1371 \mathrm{~m}, 1201 \mathrm{~s} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.73(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.91(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.98$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.14-1.24\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{5 \text {-endo, } \mathrm{S} \text {-xo }}$ $12.0,{ }^{3} J_{5 \text {-endo, } 6 \text {-endo }} 9.1$ and $\left.{ }^{3} J_{5 \text {-endo, }, 6 \text {-exo }} 4.2,5-\mathrm{H}_{\text {endo }}\right), 1.37(3 \mathrm{H}, \mathrm{d}$, ${ }^{3} J_{\text {Me,a-CH }} 6.8$, Ala $\left.\beta-\mathrm{CH}_{3}\right), 1.36-1.46(1 \mathrm{H}$, partly obscured overlapping ddd, ${ }^{2} J_{6 \text {-endo, } 6 \text {-exo }} 13.5,{ }^{3} J_{6 \text {-endd, }, 5 \text {-endo }} 9.1,{ }^{3} J_{6 \text {-endo, } 5 \text {-exo }} 4.2$, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.65\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{6 \text {-exo }, 6 \text {-endo }}\right.$ and ${ }^{3} J_{6 \text {-exo, } 5 \text {-exo }} 13.5$ and $\left.{ }^{3} J_{6 \text {-exo }, 5 \text {-endo }} 4.2,6-\mathrm{H}_{\text {exo }}\right), 1.88\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo }, 3 \text {-exo }} 16.5,3-\mathrm{H}_{\text {endo }}\right)$, $1.76-1.89\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\mathrm{exo}}\right), 1.92\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and ${ }^{3} J_{4,5-\mathrm{exo}} 4.2$, $4-\mathrm{H}), 2.31\left(1 \mathrm{H}\right.$, complex $\mathrm{dt},{ }^{2} J_{3 \text {-exo }, 3 \text {-endo }} 16.5,{ }^{3} J_{3 \text {-exo }, 4}^{4,-20} 4.2$, $\left.{ }^{4} J_{3 \text {-exo, } 5 \text {-exo }} 3.4,3-\mathrm{H}_{\text {exo }}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right), 4.04(1 \mathrm{H}, \mathrm{q}$, ${ }^{3} J_{a-C H, M e} 6.8$, Ala $\left.\alpha-\mathrm{CH}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.4(\mathrm{C}-10), 18.6$ (C-9), $18.9\left(\mathrm{Ala} \beta-\mathrm{CH}_{3}\right), 19.4$ (C-8), 27.3 (C-5), 31.8 (C-6), 35.3 (C-3), 43.8 (C-4), $47.0(\mathrm{C}-7), 51.9\left(\mathrm{OCH}_{3}\right), 53.9(\mathrm{C}-1), 59.4$ (Ala $\alpha-\mathrm{CH}), 173.45(\mathrm{C}=\mathrm{O}), 184.5(\mathrm{C}=\mathrm{N}) ; m / z(\mathrm{EI}) 237\left(2 \%, \mathrm{M}^{+}\right), 178$ ($100, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}$), $122(3.5), 108\left(3, \mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right), 95\left(12, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right)$, 83 (7), 70 (9), 55 (9).

Methyl $\quad N$-[(1R,2E,4R)-bornan-2-ylidene]-(S)-valinate $\quad 5 \mathrm{c}$ \{methyl (S)-3'-methyl-2'-([1R,2E,4R]-1,7,7-trimethylbicyclo-[2.2.1]heptan-2-ylideneamino)butanoate\}. Methyl (S)-valinate hydrochloride $\mathbf{4 c}$ ($838 \mathrm{mg}, 5 \mathrm{mmol}$) was used in the general procedure using DCM ($20 \mathrm{~cm}^{3}$) as co-solvent and gave the product, methyl $N-[(1 R, 2 E, 4 R)$-bornan-2-ylidene]-(S)valinate $\mathbf{5 c}$, as a clear oil ($823 \mathrm{mg}, 62 \%$), $[\alpha]_{\mathrm{D}}^{20}-181.2$ (c 0.52 in DCM) [Found: C, $72.1 ; \mathrm{H}, 10.15 ; \mathrm{N}, 5.2$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, $72.4 ;$ H, 10.3; N, 5.3\%. Found: m / z (EI) M ${ }^{+}$, 265.20485. Calc. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{2}: M, 265.20418$, deviation 2.5 ppm$] ; v_{\max }(\mathrm{film}) /$ $\mathrm{cm}^{-1} 2958 \mathrm{~s}$, 2874s, 1743s (C=O str), 1683s (C=N str), 1470m, $1448 \mathrm{~m}, 1386 \mathrm{w}, 1368 \mathrm{w}, 1252 \mathrm{~m}, 1196 \mathrm{~m}, 1175 \mathrm{~m}, 1137 \mathrm{~m} ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.72(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.85\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\text {Me, },-\mathrm{CH}} 6.5\right.$, Val $\left.\gamma-\mathrm{Me}_{\mathrm{a}}\right), 0.87\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{M e \rho-C H} 6.5\right.$, Val $\left.\gamma-\mathrm{Me}_{\mathrm{b}}\right), 0.89(3 \mathrm{H}, \mathrm{s}$, C-9 Me), $0.96(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.10-1.20(1 \mathrm{H}$, overlapping $\mathrm{ddd},{ }^{2} J_{5 \text {-endo }, 5 \text {-exo }} 12.2,{ }^{3} J_{5 \text {-endo, } 6 \text {-endo }} 9.4$ and $\left.{ }^{3} J_{5 \text {-endo } 6 \text {-exo }} 4.2,5-\mathrm{H}_{\text {endo }}\right)$, $1.28-1.38\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{6 \text {-endo, } 6 \text {-exx }} 13.0,{ }^{3} J_{6 \text {-endo }, 5 \text {-endo }} 9.4$, $\left.{ }^{3} J_{6 \text {-endo, }, \text {-exo }} 4.3,6-\mathrm{H}_{\text {endo }}\right), 1.62\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{6 \text {-exo }, 6 \text {-endo }}\right.$ and ${ }^{3} J_{6 \text {-exo, }, \text {-exo }}$ $\left.10.2,{ }^{3} J_{6 \text {-exo, } 5 \text {-endo }} 4.2,6-\mathrm{H}_{\text {exo }}\right), 1.73-1.85\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {exo }}\right), 1.83$
$\S \S$ The two signals for the NCH_{2} group are presumably due to nonequivalence.
$\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo }, 3 \text {-exo }} 16.5,3-\mathrm{H}_{\text {endo }}\right), 1.90\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and ${ }^{3} J_{4,5 \text {-exo }}$ $4.5,4-\mathrm{H}), 2.26\left(1 \mathrm{H}\right.$, complex octet, ${ }^{3} J_{\beta-C H, M e} 6.5$ and ${ }^{3} J_{\beta-C H, a-C H}$ 7.2, Val $\beta-\mathrm{CH}), 2.29\left(1 \mathrm{H}\right.$, complex overlapping br dt, ${ }^{2} J_{3 \text {-exo, } 3 \text {-endo }}$ $\left.16.5,{ }^{3} J_{3 \text {-exo }, 4} 4.5,{ }^{4} J_{3 \text {-exo, } 5 \text {-exo }} 3.7,3-\mathrm{H}_{\text {exo }}\right), 3.59\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{a-C H, \beta-C H}\right.$ 7.2, Val $\alpha-\mathrm{CH}$), $3.65\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 11.3 (C-10), 18.5 (Val γ-Me ${ }_{\mathrm{a}}$), 18.8 (C-9), 19.5 (Val γ - Me_{b}), 19.53 (C-8), 27.3 (C-5), 31.5 (Val $\beta-\mathrm{CH}$), 31.8 (C-6), 35.8 (C-3), $43.9(\mathrm{C}-4), 46.5(\mathrm{C}-7), 51.6\left(\mathrm{OCH}_{3}\right), 54.3(\mathrm{C}-1), 71.2$ (Val $\alpha-\mathrm{CH}), 172.5(\mathrm{C}=\mathrm{O}), 184.8(\mathrm{C}=\mathrm{N}) ; m / z(\mathrm{EI}) 265\left(7 \%, \mathrm{M}^{+}\right), 237$ (4, M - 28), $222\left(57, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right.$), 206 ($100, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}$), 162 (4), $150\left(4, \mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{+}\right), 115\left(7, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{+}\right), 108\left(3, \mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right)$, $95\left(14, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 83$ (13), 69 (12), 59 (17), 55 (18).

Methyl N-[($1 R, 2 E, 4 R)$-bornan-2-ylidene]-(S)-leucinate $5 d$ \{methyl (S)-4'-methyl-2'-([1R,2E,4R]-1,7,7-trimethylbicyclo-[2.2.1]heptan-2-ylideneamino)pentanoate\}. Methyl (S)-leucinate hydrochloride $\mathbf{4 d}$ ($908 \mathrm{mg}, 5 \mathrm{mmol}$) was used in the general procedure using DCM $\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, methyl N-[(1R,2E,4R)-bornan-2-ylidene]-(S)-leucinate 5d, as a pale yellow oil ($631 \mathrm{mg}, 45 \%$), $[a]_{\mathrm{D}}^{20}-102.4$ (c 0.50 in DCM) [Found: m / z (EI) M ${ }^{+}$, 279.22014. Calc. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{2}$: M, 279.21983, deviation 1.1 ppm ; (CI, NH_{3}) $\mathrm{MH}^{+}, 280.22770$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NO}_{2}: \mathrm{m} / \mathrm{z}, 280.22763$, deviation 0.3 ppm]; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2960 \mathrm{~s}, 2876 \mathrm{~s}, 1747 \mathrm{~s}$ (C=O str), 1685 s (C=N str), $1468 \mathrm{~m}, 1442 \mathrm{~m}, 1389 \mathrm{~m}, 1371 \mathrm{~m}, 1272 \mathrm{~m}, 1242 \mathrm{~m}, 1197 \mathrm{~m}, 1170 \mathrm{~m}$, $1142 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.73(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.82(3 \mathrm{H}, \mathrm{d}$, ${ }^{3} J_{\text {Mea, },-C H} 6.6$, Leu $\delta-\mathrm{Me}_{\mathrm{a}}$), 0.915 ($3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\text {Meb }, \gamma-\text { CH }} 6.6$, Leu $\delta-\mathrm{Me}_{\mathrm{b}}$), $0.92(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.13-1.23$ $\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{5 \text {-endo, } 5 \text {-exo }} 12.6,{ }^{3} J_{5 \text {-endo }, 6 \text {-endo }} 9.1$ and $\left.{ }^{3} J_{5 \text {-endo }, 6 \text {-exo }} 4.1,5-\mathrm{H}_{\text {endo }}\right), 1.35-1.45(1 \mathrm{H}$, overlapping ddd, $\left.{ }^{2} J_{6 \text {-e-endo, } 6 \text {-exo }}^{5} 13.5,{ }^{3} J_{6 \text {-endo }, 5 \text {-endo }} 9.1,{ }^{3} J_{6 \text {-endo }, 5 \text {-exo }} 4.5,6-\mathrm{H}_{\text {endo }}\right), 1.49-$ $1.89(5 \mathrm{H}$, series of overlapping multiplets, partially discernable as: 1.49-1.62, complex m, $6-\mathrm{H}_{\text {exo }} ; 1.63-1.71$, complex m, Leu $\gamma-\mathrm{CH} ; 1.68-1.82, \mathrm{~m},{ }^{3} \mathrm{~J} 8.6$ and 5.2 , Leu $\beta-\mathrm{CH}_{2} ; 1.78-1.89$, complex $\left.\mathrm{m}, 5-\mathrm{H}_{\text {exo }}\right), 1.88\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo } 3 \text { - }- \text { exo }} 16.8,3-\mathrm{H}_{\text {endo }}\right), 1.92$ $\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and $\left.{ }^{3} J_{4,5-\mathrm{exo}} 4.5,4-\mathrm{H}\right), 2.33(1 \mathrm{H}$, overlapping ddd, $\left.{ }^{2} J_{3 \text {-exo } 3 \text {-endo }} 16.8,{ }^{3} J_{3 \text {-exo }, 4} 4.5,{ }^{4} J_{3 \text {-exo, } 5 \text {-exo }} 2.8,3-\mathrm{H}_{\text {exo }}\right), 3.67(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right), 3.97\left(1 \mathrm{H}\right.$, dd, ${ }^{3} J_{a-C H, \beta-C H a} 8.6,{ }^{3} J_{a-C H, \beta-C H b} 5.2$, Leu $\alpha-\mathrm{CH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 11.3 (C-10), 18.9 (C-9), 19.5 (C-8), 21.6 (Leu δ-Me ${ }_{\mathrm{a}}$), 23.3 (Leu δ-Me Me_{b}), 24.7 (Leu γ-CH), 27.3 (C-5), 31.8 (C-6), 35.7 (C-3), 42.1 (Leu $\beta-\mathrm{CH}_{2}$), 43.9 (C-4), $46.7(\mathrm{C}-7), 51.7\left(\mathrm{OCH}_{3}\right), 54.1(\mathrm{C}-1), 62.6(\mathrm{Leu} \alpha-\mathrm{CH}), 173.2$ (C=O), 184.7 (C=N); m/z (EI) $279\left(4.5 \%, \mathrm{M}^{+}\right), 264$ (9 , $\left.\mathrm{M}-\mathrm{CH}_{3}\right), 251(28, \mathrm{M}-28), 236\left(17, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 223(100$, $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}$), 220 ($90, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}$), 208 (12), 194 (11), 178 (12), 163 (19.5), 150 ($12, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2}$), 136 (6), 129 ($6, \mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}^{+}$), $108\left(8, \mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right), 95\left(26, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 83(35), 69(35), 55(27) ; \mathrm{m} / \mathrm{z}$ $\left(\mathrm{CI}, \mathrm{NH}_{3}\right), 280\left(100 \%, \mathrm{MH}^{+}\right), 264\left(2, \mathrm{M}-\mathrm{CH}_{3}\right), 251(8$, $\mathrm{M}-28), 236\left(1, \mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right), 220$ (21, M - $\mathrm{CO}_{2} \mathrm{Me}$), 208 (1), $152(2), 95\left(1, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right)$.

Methyl $\quad N-\left[(1 R, 2 E, 4 R)\right.$-bornan-2-ylidene]-($\left.2^{\prime} S, 3^{\prime} S\right)$-isoleucinate 5e \{methyl ($\mathbf{2}^{\prime} S, 3^{\prime} S$)-3'-methyl-2'-([1R,2E,4R]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylideneamino)pentanoate\}.
Methyl ($2 S, 3 S$)-isoleucinate hydrochloride $\mathbf{4 e}(908 \mathrm{mg}, 5 \mathrm{mmol})$ was used in the general procedure using DCM $\left(20 \mathrm{~cm}^{3}\right)$ as cosolvent and gave the product, methyl $N-[(1 R, 2 E, 4 R)$-bornan2 -ylidene]-($2^{\prime} S, 3^{\prime} S$)-isoleucinate $\mathbf{5 e}$, as a clear oil (908 mg , 65%), $[a]_{\mathrm{D}}^{27}-149.4$ (c 0.32 in DCM) [Found: m / z (EI) M ${ }^{+}$, 279.22039. Calc. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{2}: M, 279.21983$, deviation 1.9 $\mathrm{ppm}] ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2960 \mathrm{~s}, 2876 \mathrm{~m}, 1743 \mathrm{~s}, 1732 \mathrm{sh}$ (C=O str), 1679 m ($\mathrm{C}=\mathrm{N}$ str), $1453 \mathrm{~m}, 1436 \mathrm{~m}$, 1388w, 1374w, 1261m, $1194 \mathrm{~m}, 1171 \mathrm{~m}, 1139 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.73(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8$ $\mathrm{Me}), 0.84\left[3 \mathrm{H}, \mathrm{t},{ }^{3} J_{(\mathrm{Me}, \gamma-\mathrm{CH}}\right) 7.2$, Ile δ-Me], $0.87\left(3 \mathrm{H}, \mathrm{d},{ }^{3} J_{\text {Me, }^{-\beta-C H}}\right.$ 6.4, Ile $\gamma-\mathrm{Me}), 0.915(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.98(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me})$, 1.01-1.12 (1 H , complex m, Ile $\gamma-\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), 1.11-1.20 $(1 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{5 \text {-endo, } \text {-exo }} 12.2,{ }^{3} J_{5 \text {-endo, } 6 \text {-endo }} 9.1$ and ${ }^{3} J_{5 \text {-endo,6-exo }} 4.0$, $\left.5-\mathrm{H}_{\text {endo }}\right), 1.29-1.40\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{6 \text {-endo, } 6 \text {-exo }} 12.6$, $\left.{ }^{3} J_{6 \text {-endo, } 5 \text {-endo }} 9.1,{ }^{3} J_{6 \text {-endo, } 5 \text {-exo }} 4.2,6-\mathrm{H}_{\text {endo }}\right), 1.42-1.56[1 \mathrm{H}, \mathrm{dqd}$,

$1.58-1.69\left(1 \mathrm{H}, \operatorname{td},{ }^{2} J_{6 \text {-exo } 6 \text {-endo }}\right.$ and ${ }^{3} J_{6 \text {-exo, } 5 \text {-exo }} 12.6,{ }^{3} J_{6 \text {-exo }, 5 \text {-endo }} 4.0$, $\left.6-\mathrm{H}_{\text {exo }}\right), 1.75-1.87\left(1 \mathrm{H}\right.$, complex m, $\left.5-\mathrm{H}_{\text {exo }}\right), 1.85(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{2} J_{3 \text {-endo }, 3 \text {-exo }} 16.9,3-\mathrm{H}_{\text {endo }}\right), 1.91\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and ${ }^{3} J_{4,5 \text {-exo }} 4.5$, $4-\mathrm{H}), 2.01-2.15(1 \mathrm{H}$, complex m, Ile $\beta-\mathrm{CH}), 2.31(1 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{3 \text {-exo, } 3 \text {-endo }} 16.9,{ }^{3} J_{3 \text {-exo }, 4} 4.5,{ }^{4} J_{3 \text {-exo }, 5 \text {-exo }} 2.8,3-\mathrm{H}_{\text {exo }}$), $3.667\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\alpha-\mathrm{CH}, \beta-\mathrm{CH}} 7.9\right.$, Ile $\left.\alpha-\mathrm{CH}\right), 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right)$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 11.1 (Ile δ-Me), 11.3 (C-10), 15.7 (Ile γ-Me), 18.9 (C-9), 19.5 (C-8), 24.9 (Ile $\gamma-\mathrm{CH}_{2}$), 27.3 (C-5), 31.9 (C-6), 35.8 (C-3), 37.8 (Ile $\beta-\mathrm{CH}$), 43.9 (C-4), 46.7 (C-7), 51.6 $\left(\mathrm{OCH}_{3}\right), 54.4(\mathrm{C}-1), 70.3$ (Ile $\left.\alpha-\mathrm{CH}\right), 172.6(\mathrm{C}=\mathrm{O}), 185.1(\mathrm{C}=\mathrm{N})$; $m / z(E I) 279\left(6 \%, \mathrm{M}^{+}\right), 264\left(4, \mathrm{M}-\mathrm{CH}_{3}\right), 251(22, \mathrm{M}-28)$, 223 ($68, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}$), $222\left(70, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$, $220\left(100, \mathrm{M}-\mathrm{CO}_{2}-\right.$ $\mathrm{Me}), 208$ (9), 180 (6), 163 (18), $150\left(10, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2}\right), 129$ (11, $\left.\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2}{ }^{+}\right), 108\left(8, \mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right), 95\left(25, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 83(16), 69(53), 59$ (33), 55 (39).

Methyl $\quad N$-[(1R,2E,4R)-bornan-2-ylidene]-(S)-serinate $\quad 5 f$ \{methyl (S)-3'-hydroxy-2'-([1R,2E,4R]-1,7,7-trimethylbicyclo-[2.2.1]heptan-2-ylideneamino)propanoate\}. Methyl ($2 S$)-serinate hydrochloride $\mathbf{4 f}(778 \mathrm{mg}, 5 \mathrm{mmol})$ was used in the general procedure using $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, methyl $N-[(1 R, 2 E, 4 R)$-bornan-2-ylidene $]-(S)$-serinate 5f, as a clear oil ($836 \mathrm{mg}, 66 \%$) [Found: m / z (EI) M, 253.16779. Calc. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}: \quad M, 253.16779$, deviation 0 ppm$]$; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3432 \mathrm{vbr} \mathrm{m}(\mathrm{O}-\mathrm{H}$ str), 2957s, 2876m, 1741s (C=O $\mathrm{str}), 1679 \mathrm{~s}(\mathrm{C}=\mathrm{N} \operatorname{str}), 1437 \mathrm{~m}, 1390 \mathrm{~m}, 1371 \mathrm{~m}, 1200 \mathrm{~s}, 1171 \mathrm{~s}$, $1052 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \boldsymbol{1 T} 0.70$ and $0.77(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me})$, 0.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}$), 0.93 and 0.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}$), 1.12-1.21 (1 H , overlapping ddd, ${ }^{2} J_{5 \text {-endo, } 5 \text {-exo }} 12.8,{ }^{3} J_{5 \text {-endo }, 6 \text {-endo }} 9.0$ and $\left.{ }^{3} J_{5 \text {-endo }, \text {-exo }} 4.1,5-\mathrm{H}_{\text {endo }}\right), 1.23-1.33$ and $1.35-1.45(1 \mathrm{H}, 2 \times$ overlapping ddd, ${ }^{2} J_{6 \text {-endo } 0,6 \text {-exo }} 12.7,{ }^{3} J_{6 \text {-endo, }, \text {-endo }} 9.0,{ }^{3} J_{6 \text {-endo, } 5 \text {-exo }} 4.5$, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.58-1.70\left(1 \mathrm{H}, \mathrm{br}\right.$ ddd, ${ }^{2} J_{6 \text {-exo, } 6 \text {-endo }} 12.7,{ }^{3} J_{6 \text {-exo, } 5 \text {-exo }} 12.0$ and $\left.{ }^{3} J_{6 \text {-exo }, 5-\text { endo }} 4.1,6-\mathrm{H}_{\text {exo }}\right), 1.75-1.86\left(1 \mathrm{H}\right.$, complex $\left.\mathrm{m}, 5-\mathrm{H}_{\text {exo }}\right)$, 1.78 and $1.84\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo }, 3 \text {-exo }} 16.8,3-\mathrm{H}_{\text {endo }}\right), 1.90(1 \mathrm{H}, \mathrm{t}$, ${ }^{3} J_{4,3 \text {-exo }}$ and $\left.{ }^{3} J_{4,5 \text {-exo }} 4.4,4-\mathrm{H}\right), 2.32\left(1 \mathrm{H}\right.$, br ddd, ${ }^{2} J_{3 \text {-exo }, 3 \text {-endo }} 16.8$, $\left.{ }^{3} J_{3 \text {-exo, } 4} 4.4,{ }^{4} J_{3 \text {-exo }, 5-e x o} 3.0,3-\mathrm{H}_{\text {exo }}\right), 3.11(1 \mathrm{H}$, br s, OH$), 3.64$ and $3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right), 3.83\left[1 \mathrm{H}\right.$, ddd, ${ }^{2} J_{\beta-\mathrm{CHa}, \text { CHb }} 11.0,{ }^{3} J_{\beta-\mathrm{CH}, a-\mathrm{CH}}$ $\left.5.5,{ }^{3} J_{(\beta-\mathrm{CH}}^{2}-\mathrm{OH}\right)=1.5$, Ser $\left.\beta-\mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}}\right], 3.89\left[1 \mathrm{H}\right.$, ddd, ${ }^{2} J_{\beta-\text { СНаснb }}$ $\left.11.0,{ }^{3} J_{\beta-\mathrm{CH}, a-\mathrm{CH}} 5.0,{ }^{3} J_{(\beta-\mathrm{CH}}^{2}-\mathrm{OH}\right) 1.5$, Ser $\left.\beta-\mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}}\right], 4.22(1 \mathrm{H}$, $\mathrm{dd},{ }^{3} J_{\alpha-\mathrm{CH}, \beta-\mathrm{CHa}} 5.5,{ }^{3} J_{\alpha-\mathrm{CH}, \beta-\mathrm{CH}} 5.0$, Ser $\left.\alpha-\mathrm{CH}\right) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 11.18$ and $11.24(\mathrm{C}-10), 18.8$ and $19.0(\mathrm{C}-9), 19.3$ and 19.5 (C-8), 27.2 and 27.3 (C-5), 31.7 and 32.3 (C-6), 36.0 and 36.3 (C-3), 43.81 and 43.84 (C-4), 46.8 and 47.6 (C-7), 51.93 and $51.98\left(\mathrm{OCH}_{3}\right), 54.43$ and $54.46(\mathrm{C}-1), 63.6$ and $63.7(\mathrm{Ser}$ $\left.\beta-\mathrm{CH}_{2}\right), 65.0$ and $65.2(\operatorname{Ser} \alpha-\mathrm{CH}), 171.07$ and $171.14(\mathrm{C}=\mathrm{O})$, 188.2 and $188.6(\mathrm{C}=\mathrm{N}) ; m / z$ (EI) 253 ($3 \% \mathrm{M}^{+}$), 238 (3, $\left.\mathrm{M}-\mathrm{CH}_{3}\right), 223\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{CO}\right), 222\left(100, \mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right), 208$ (4), 194 (57.5, M - $\mathrm{CO}_{2} \mathrm{Me}$), 164 (37), 136 ($13.5, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NO}_{3}$), $108\left(25.2, \mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right), 95\left(78.5, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 83(57), 69$ (37), 55 (39).

Diethyl N-[(1R,2E,4R)-bornan-2-ylidene]-((S)-glutamate 5 g \{diethyl $\quad(S)-2^{\prime}$-([1R,2E,4R]-1,7,7-trimethylbicyclo[2.2.1]-heptan-2-ylideneamino)pentanedioate\}. Diethyl (S)glutamate hydrochloride $\mathbf{4 g}(1.20 \mathrm{~g}, 5 \mathrm{mmol})$ was used in the general procedure using DCM ($20 \mathrm{~cm}^{3}$) as co-solvent and gave the product, diethyl N-[(1R,2E,4R)-bornan-2-ylidene]-(S)glutamate 5 g , as a clear oil ($1.29 \mathrm{~g}, 76 \%$), $[a]_{\mathrm{D}}^{26}-142.4(c 0.50$ in DCM) [Found: m / z (EI) M ${ }^{+}, 337.22574$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{4}$: M, 337.22531, deviation 1.3 ppm$] ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2962 \mathrm{~s}$, 2886m, 1739s ($\mathrm{C}=\mathrm{O}$ str), 1685s ($\mathrm{C}=\mathrm{N}$ str), $1448 \mathrm{~m}, 1374 \mathrm{~m}$, $1254 \mathrm{~m}, 1180 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.71(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.89$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.11-1.23(1 \mathrm{H}$,

[^4]submerged complex $\left.\mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right), 1.19\left[3 \mathrm{H}, \mathrm{t},{ }^{3} J_{\left(\mathrm{CH}_{2}, \mathrm{Me)}\right.} 7.0\right.$, $\left.\gamma-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 1.20\left[3 \mathrm{H}, \mathrm{t},{ }^{3} J_{(\mathrm{CH}}^{2}\right.$, Me) $\left.) ~ 7.0, ~ \alpha-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right]$, 1.33-1.43 (1 H , overlapping ddd, ${ }^{2} J_{\text {b-endo, } 6 \text {-exo }} 12.7,{ }^{3} J_{6 \text {-endo, } 5 \text {-endo }} 9.2$, $\left.{ }^{3} J_{6 \text {-endo, }, \text {-exo }} 4.2,6-\mathrm{H}_{\text {endo }}\right), 1.58-1.69\left(1 \mathrm{H}, \mathrm{td},{ }^{2} J_{6 \text {-exo }, 6 \text {-endo }}\right.$ and $\left.{ }^{3} J_{6 \text {-exo. } 5 \text {-exo }} 12.7,{ }^{3} J_{6 \text {-exo } 5 \text {-endo }} 4.0,6-\mathrm{H}_{\text {exo }}\right), 1.74-1.87(1 \mathrm{H}$, complex $\left.\mathrm{m}, 5-\mathrm{H}_{\text {exo }}\right), 1.86\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo }, 3 \text {-exo }} 17.0,3-\mathrm{H}_{\text {endo }}\right), 1.90(1 \mathrm{H}, \mathrm{t}$, ${ }^{3} J_{4,3 \text {-exo }}$ and $\left.{ }^{3} J_{4,5-\text { exo }} 4.8,4-H\right), 2.04-2.37$ (5 H , overlapping complex m, Glu $\beta-\mathrm{CH}_{2}$, Glu $\gamma-\mathrm{CH}_{2}$ and $\left.3-\mathrm{H}_{\text {exo }}\right), 3.95(1 \mathrm{H}$, dd, ${ }^{3} J_{a-C H, \beta-C H a} 9.0,{ }^{3} J_{a-C H, \beta-C H b} 4.2, \quad$ Glu $\left.\alpha-\mathrm{CH}\right), 4.06[2 \mathrm{H}, \mathrm{q}$, $\left.{ }^{3} J_{\left(\mathrm{CH}_{2}, \mathrm{Me}\right)} 7.0, \quad \gamma-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 4.093$ and $4.100[2 \mathrm{H}, \mathrm{q}$, $\left.{ }^{3} J_{\left(\mathrm{CH}_{2} \mathrm{Me)}\right.} 7.0, \alpha-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right] ;\| \| \| l \mid \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.2$ (C-10), $14.07\left(\mathrm{Glu} \gamma-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 14.15 (Glu $\alpha-\mathrm{CO}_{2} \mathrm{CH}_{2}-$ $\left.\mathrm{CH}_{3}\right), 18.8(\mathrm{C}-9), 19.5(\mathrm{C}-8), 27.3(\mathrm{C}-5), 27.8\left(\mathrm{Glu} \beta-\mathrm{CH}_{2}\right), 30.4$ ($\mathrm{Glu} \gamma-\mathrm{CH}_{2}$), 31.8 (C-6), 35.8 (C-3), 43.9 (C-4), 46.7 (C-7), 54.3 (C-1), $60.2\left(\mathrm{Glu} \gamma-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 60.7\left(\mathrm{Glu} \alpha-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 62.5 (Glu $\alpha-\mathrm{CH})$, $171.6(\gamma-\mathrm{C}=\mathrm{O})$, $173.2(\alpha-\mathrm{C}=\mathrm{O})$, $186.5(\mathrm{C}=\mathrm{N})$; m / z (EI) $337\left(15 \%, \mathrm{M}^{+}\right), 309\left(2, \mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4}\right), 308$ ($6, \mathrm{M}-$ $\mathrm{C}_{2} \mathrm{H}_{5}$), 292 (11, M - $\mathrm{OC}_{2} \mathrm{H}_{5}$), 264 ($95, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}$), 263 (20, $\mathrm{M}-\mathrm{Et}_{2} \mathrm{O}$), 250 (50), 237 (4, M - $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$), 236 (7), 208 (2), 190 (6), 150 (5), 121 (7), $108\left(7, \mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right), 95\left(15, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 85$ (72.5), 83 (100), 69 (9), 55 (12).

Methyl N-[(1R,2E,4R)-bornan-2-ylidene]-(S)-methioninate 5h \{methyl (S)-2'-([1R,2E,4R]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylideneamino)-5'-thiahexanoate\}. Methyl (S)-methioninate hydrochloride $4 \mathrm{~h}(998 \mathrm{mg}, 5 \mathrm{mmol}$) was used in the general procedure using DCM $\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, methyl N-[(1R,2E,4R)-bornan-2-ylidene]-(S)-methioninate 5 h , as a pale yellow oil ($993 \mathrm{mg}, 67 \%$), $[a]_{\mathrm{D}}^{29}-14.8(c 1.15 \mathrm{in}$ DCM) [Found: m / z (EI) M^{+}, 297.17528. Calc. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$: M, 297.17625, deviation 3.2 ppm$] ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2961 \mathrm{~s}$, $2882 \mathrm{~m}, 1744 \mathrm{~s}$ ($\mathrm{C}=\mathrm{O}$ str), 1683s (C=N str), 1436s, 1390m, 1371m, $1275 \mathrm{~m}, 1201 \mathrm{~s}, 1166 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.72(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8$ $\mathrm{Me}), 0.90(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.13-$ $1.23\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{5 \text {-endo, }, 5 \text {-exo }} 12.5,{ }^{3} J_{5 \text {-endo, }, 6 \text {-endo }} 9.1$, ${ }^{3} J_{5 \text {-endo, }- \text {-exo }} 4.0,5-\mathrm{H}_{\text {endo }}$), $1.34-1.44$ (1 H , overlapping ddd, $\left.{ }^{2} J_{6 \text {-endo, }, 6 \text {-exo }}^{5} 12.5,{ }^{3} J_{6 \text {-endo, } 5 \text {-endo }} 9.1,{ }^{3} J_{6 \text {-endo, } 5 \text {-exo }} 4.4,6-\mathrm{H}_{\text {endo }}\right), 1.59-$ $1.69\left(1 \mathrm{H}, \mathrm{td},{ }^{2} J_{6 \text {-exo, } 6 \text {-endo }}\right.$ and ${ }^{3} J_{6 \text {-exo, } 5 \text {-exo }} 12.5,{ }^{3} J_{6 \text {-exo, } 5 \text {-endo }} 4.0$, $6-\mathrm{H}_{\text {exo }}$), $1.75-1.88$, (1 H , complex m, $5-\mathrm{H}_{\text {exo }}$), $1.86(1 \mathrm{H}, \mathrm{d}$, $\left.{ }^{2} J_{3 \text {-endo } 3 \text {-exo }} 16.9,3-\mathrm{H}_{\text {endo }}\right), 1.92\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and ${ }^{3} J_{4,5 \text {-exo }} 4.5$, $4-\mathrm{H}), 2.02(3 \mathrm{H}, \mathrm{s}$, Met $\varepsilon-\mathrm{Me}), 2.11-2.19$ (2 H , complex m, Met γ - $\left.\mathrm{CH}_{2}\right), 2.36\left[1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{\beta-\mathrm{CHa} a, \mathrm{CH}} 13.0,{ }^{3} \mathrm{~J}_{(\mathrm{BCHa}, \gamma-\mathrm{CH})} 7.5\right.$, Met $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right)$], $2.44\left(1 \mathrm{H}, \mathrm{br}\right.$ ddd, ${ }^{2} J_{3 \text {-exo,3-endo }} 16.9,{ }^{3} J_{3 \text {-exo }, 4} 4.5$, $\left.{ }^{4} J_{3 \text {-exo, } 5 \text {-exo }} 3.5,3-\mathrm{H}_{\text {exo }}\right), 2.53\left[1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{\beta-\mathrm{CHa}, \text { CHb }} 13.0,{ }^{3} J_{\left(\beta-\text {-CHb }, \gamma-\mathrm{CH}_{2}\right)}\right.$ 5.5 , $\left.\operatorname{Met} \beta-\mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}}\right], 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right), 4.12\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\alpha-\mathrm{CH}, \beta-\mathrm{CH} 2}\right.$ 6.5, Met $\alpha-\mathrm{CH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 11.1 (C-10), 15.1 (Met ε-Me), 18.8 (C-9), 19.5 (C-8), 27.3 (C-5), 30.7 (Met $\gamma-\mathrm{CH}_{2}$), 31.5 (Met $\beta-\mathrm{CH}_{2}$), 31.7 (C-6), 36.0 (C-3), 43.8 (C-4), 46.8 (C-7), $51.9\left(\mathrm{OCH}_{3}\right), 54.3(\mathrm{C}-1), 61.9(\mathrm{Met} \alpha-\mathrm{CH}), 172.5(\mathrm{C}=\mathrm{O}), 186.6$ (C=N); m/z (EI) $299(2 \%, M+2), 297\left(10, \mathrm{M}^{+}\right), 282(7.5$, $\left.\mathrm{M}-\mathrm{CH}_{3}\right), 269(4, \mathrm{M}-28), 250\left(2.5, \mathrm{M}-\mathrm{SCH}_{3}\right), 238(13$, $\left.\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right), 236\left(27, \mathrm{M}-\mathrm{CH}_{3} \mathrm{SCH}_{2}\right), 223\left(100, \mathrm{M}-\mathrm{C}_{3}-\right.$ $\mathrm{H}_{6} \mathrm{~S}$), 208 (11), 163 (20.5), 150 (11, M - $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}$), 108 (9, $\left.\mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right), 95\left(17, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 83(78), 69(19.5), 61\left(27, \mathrm{CH}_{3} \mathrm{SCH}_{2}{ }^{+}\right)$, 55 (14).

Methyl N-[(1R,2E,4R)-bornan-2-ylidene]-(S)-phenylalaninate

 5i \{methyl (S)-3'-phenyl-2'-([1R,2E,4E]-1,7,7-trimethylbicyclo-[2.2.1]heptan-2-ylideneamino)propanoate\}. Methyl (S)-phenylalaninate hydrochloride $\mathbf{4 i}(1.078 \mathrm{~g}, 5 \mathrm{mmol})$ was used in the general procedure using $\operatorname{DCM}\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, methyl N-[(1R,2E,4R)-bornan-2-ylidene]-(S)phenylalaninate $\mathbf{5 i}$, as white, needle-shaped crystals (1.066 g , 68%), mp 38.0-38.5 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}^{27}-156.5$ ($c 0.50$ in DCM) [Found: C, 76.5; $\mathrm{H}, 8.6 ; \mathrm{N}, 4.5$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, $76.6 ; \mathrm{H}, 8.7 ; \mathrm{N}$, 4.5%. Found: $m / z(E I) M^{+}, 313.20396$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}: M$, 313.20418, deviation 0.7 ppm ; $\left(\mathrm{CI}, \mathrm{NH}_{3}\right): \mathrm{MH}^{+}, 314.21200$.|||| A conformational effect may be responsible for the splitting of the α-ester CH_{2} signal.

Calc. for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{NO}_{2}: ~ m / z, 314.21198$, deviation 0.1 ppm$]$; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3068 \mathrm{w}$, 3033m, 2961s, 2878m, 1744s (C=O str), 1687s (C=N str), 1607w, 1498m, 1456m, 1440m, 1391m, 1372m, $1279 \mathrm{~m}, 1244 \mathrm{~m}, 1201 \mathrm{~s}, 1169 \mathrm{~s}, 749 \mathrm{~m}, 700 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}$), $0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.93(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10$ Me), $1.08-1.17\left(1 \mathrm{H}\right.$, complex $\left.\mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right), 1.335(1 \mathrm{H}$, complex ddd, $\left.{ }^{2} J_{6 \text {-endo } 6 \text {-exo }} 12.5,{ }^{3} J_{6 \text {-endo, } 5 \text {-endo }} 9.2,{ }^{3} J_{6 \text {-endo, }, \text {-exo }} 4.0,6-\mathrm{H}_{\text {endo }}\right)$, $1.55-1.67\left(1 \mathrm{H}\right.$, complex $\mathrm{dt},{ }^{2} J_{6 \text {-exo, } 6 \text {-endo }}$ and ${ }^{3} J_{6 \text {-exo }, 5 \text {-exo }} 12.5$, $\left.{ }^{3} J_{6 \text {-exo }, 5 \text {-endo }} 5.0,6-\mathrm{H}_{\mathrm{ex}}\right), 1.70-1.78$, $(2 \mathrm{H}$, overlapping complex m, $\left.4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}\right), 1.77\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo } 3 \text {-exo }} 16.4,3-\mathrm{H}_{\text {endo }}\right), 1.90(1 \mathrm{H}, \mathrm{dt}$, ${ }^{2} J_{3 \text {-exo }, 3 \text {-endo }} 16.4,{ }^{3} J_{4,3 \text {-exo }}$ and $\left.{ }^{4} J_{3 \text {-exo } 5 \text {-exo }} 3.5,3-\mathrm{H}_{\text {exo }}\right), 3.08(1 \mathrm{H}$, dd, ${ }^{2} J_{\beta-\text { CHa, СHb }} 13.2,{ }^{3} J_{\beta-C H a, a-C H} 9.8$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{CH}^{\mathrm{b}}\right), 3.28(1 \mathrm{H}, \mathrm{dd}$, ${ }^{2} J_{\beta-C H b, C H a} 13.2,{ }^{3} J_{\beta-C H b, a-C H} 4.2$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{C} H^{\mathrm{b}}\right), 3.71(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right), 4.16\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\alpha-\text {-CH, } \beta \text {-CHa }} 9.8,{ }^{3} J_{\alpha-\text {-CH, },- \text { CHb }} 4.2\right.$, Phe $\alpha-\mathrm{CH}), 7.18(5 \mathrm{H}$, apparent s , Phe aryl CH$) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 11.3(\mathrm{C}-10), 18.8(\mathrm{C}-9), 18.9(\mathrm{C}-8), 27.2(\mathrm{C}-5), 31.9$ (C-6), 35.8 (C-3), 39.4 (Phe $\beta-\mathrm{CH}_{2}$), 43.8 (C-4), 46.6 (C-7), 52.0 $\left(\mathrm{OCH}_{3}\right), 54.1(\mathrm{C}-1), 66.3($ Phe $\alpha-\mathrm{CH}), 126.2($ Phe $p-\mathrm{CH}), 128.2$ (Phe $m-\mathrm{CH}$), 129.5 (Phe $o-\mathrm{CH}), 138.5$ (Phe $i-\mathrm{C}), 172.4(\mathrm{C}=\mathrm{O})$, $185.2(\mathrm{C}=\mathrm{N})$; $\mathrm{m} / z(\mathrm{EI}), 313\left(3 \%, \mathrm{M}^{+}\right), 254\left(21, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}\right)$, 223 (13), 222 (100, M - $\mathrm{C}_{7} \mathrm{H}_{7}$), 221 (26.5), 162 (3.5, [$\{\mathrm{M}-$ $90\}-59]), 121(6), 95\left(4, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 91\left(5.5, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right), 83(17), 77$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}\right), 69(11), 55(2) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 314\left(100 \%, \mathrm{MH}^{+}\right), 254$ (6, M - $\mathrm{CO}_{2} \mathrm{Me}$), 222 ($35, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}$), 152 (19), 121 (2), 108 $\left(2, \mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right), 91\left(3, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right)$.

NOE difference $\left(\mathrm{CDCl}_{3}\right)$ irradiation at $\delta 0.17 \mathrm{C}-8 \mathrm{Me}$ (enhances signal at $\delta 0.82 \mathrm{C}-9 \mathrm{Me}$ by $+0.1 \%, \delta 0.93 \mathrm{C}-10$ $\left.\mathrm{Me}+0.7 \%, \delta 1.903-\mathrm{H}_{\text {exo }}+2.9 \%, \delta 7.18 \mathrm{Ph}+2.0 \%\right), 0.82 \mathrm{C}-9 \mathrm{Me}$ $\left(0.17 \mathrm{C}-8 \mathrm{Me}+3.0 \%, 1.55-1.676-\mathrm{H}_{\text {exo }}+2.6 \%, 1.70-1.784-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{\text {exo }}+4.4 \%\right), 0.93 \mathrm{C}-10 \mathrm{Me}\left(1.55-1.676-\mathrm{H}_{\text {exo }}+1.8 \%\right)$, $1.08-1.175-\mathrm{H}_{\text {endo }}\left(1.70-1.783-\mathrm{H}_{\text {endo }}, 4-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{\text {exo }}+12.1 \%\right)$, $1.3356-\mathrm{H}_{\text {endo }}\left(1.55-1.676-\mathrm{H}_{\text {exo }}+8.5 \%\right), 1.55-1.676-\mathrm{H}_{\text {exo }}(1.335$ $\left.6-\mathrm{H}_{\text {endo }}+8.0 \%\right), 1.903-\mathrm{H}_{\text {exo }}\left(1.70-1.783-\mathrm{H}_{\text {endo }}, 4-\mathrm{H}\right.$ and $5-\mathrm{H}_{\text {exo }}$ $+4.9 \%$, 4.16 Phe $\alpha-\mathrm{CH}+2.8 \%$), 3.08 Phe $\beta-\mathrm{CH}_{\mathrm{a}}$ (3.28 Phe $\beta-\mathrm{CH}_{\mathrm{b}}+9.6 \%, 4.16$ Phe $\left.\alpha-\mathrm{CH}+0.9 \%, 7.18 \mathrm{Ph}+2.3 \%\right), 3.28$ Phe $\beta-\mathrm{CH}_{\mathrm{b}}$ (3.08 Phe $\beta-\mathrm{CH}_{\mathrm{a}}+9.3 \%$, 4.16 Phe $\alpha-\mathrm{CH}+2.5 \%$, 7.18 $\mathrm{Ph}+1.8 \%$), $3.71 \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$ (no effect), 4.16 Phe $\alpha-\mathrm{CH}$ $\left(1.70-1.783-\mathrm{H}_{\text {endo }}, 4-\mathrm{H}\right.$ and $5-\mathrm{H}_{\text {exo }}+2.1 \%, 1.903-\mathrm{H}_{\text {exo }}+2.9 \%$, 3.28 Phe $\beta-\mathrm{CH}_{\mathrm{b}}+2.1 \%$).

Benzyl $\quad N$-[(1R,2E,4R)-bornan-2-ylidene]-(S)-phenylalaninate 5j \{benzyl (S)-3'-phenyl-2'-([1R,2E,4R]-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-ylideneamino)propanoate\}. Benzyl (S)phenylalaninate hydrochloride $\mathbf{4 j}(1.458 \mathrm{~g}, 5 \mathrm{mmol})$ was used in the general procedure using DCM $\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, benzyl $N-[(1 R, 2 E, 4 R)$-bornan-2-ylidene]-(S)-phenylalaninate $\mathbf{5 j}$, as a clear oil $(1.324 \mathrm{~g}, 68 \%),[a]_{\mathrm{D}}^{27}-138.3$ (c 0.57 in DCM) [Found: C, 79.5; H, 8.0; N, 3.6. Calc. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{2}$: C, $80.2 ; \mathrm{H}, 8.0 ; \mathrm{N}, 3.6 \%$. Found: m / z (EI) M ${ }^{+}$, 389.23692. Calc. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{2}: M, 389.23548$, deviation 3.7 ppm]; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3065 \mathrm{w}, 3031 \mathrm{w}, 2957 \mathrm{~s}$, 2880m, 1740s (C=O str), $1680 \mathrm{~m}(\mathrm{C}=\mathrm{N}$ str) $, 1604 \mathrm{w}, 1496 \mathrm{~m}, 1453 \mathrm{~m}, 1389 \mathrm{w}, 1373 \mathrm{w}$, $1277 \mathrm{~m}, 1209 \mathrm{~m}, 1161 \mathrm{~s}, 748 \mathrm{~m}, 698 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)^{* * *} 0.19$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me})$, $0.96-1.05\left(1 \mathrm{H}\right.$, complex $\left.\mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right), 1.25(1 \mathrm{H}$, complex ddd, $\left.{ }^{2} J_{6 \text {-endo }, 6 \text {-exo }} 13.0,{ }^{3} J_{6 \text {-endo, } 5 \text {-endo }} 9.2,{ }^{3} J_{6 \text {-endo }, 5 \text {-exo }} 4.0,6-H_{\text {endo }}\right)$, $1.52-1.63\left(1 \mathrm{H}\right.$, complex dt, ${ }^{2} J_{6 \text {-exo }, 6 \text {-endo }} 13.0,{ }^{3} J_{6 \text {-exo,5-exo }} 13.0$, $\left.{ }^{3} J_{6 \text {-exo }, 5-\text { endo }} 4.0,6-\mathrm{H}_{\text {exo }}\right), 1.66-1.77(2 \mathrm{H}$, overlapping complex m, $\left.4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}\right), 1.76\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo } 3 \text {-exo }} 17.0,3-\mathrm{H}_{\text {endo }}\right), 1.92(1 \mathrm{H}, \mathrm{dt}$, ${ }^{2} J_{3 \text {-exo } 3 \text {-endo }} 17.0,{ }^{3} J_{4,3 \text {-exo }}$ and $\left.{ }^{4} J_{3 \text {-exo, } 5 \text {-exo }} 3.6,3-\mathrm{H}_{\text {exo }}\right), 3.15(1 \mathrm{H}$, dd, ${ }^{2} J_{\beta-\text { CHa,CHb }} 13.2,{ }^{3} J_{\beta-\text { CHa,a-CH }} 9.8$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{CH}^{\mathrm{b}}\right)$, $3.33(1 \mathrm{H}$,
 dd, ${ }^{3} J_{a-\text { CH }, \beta-\text { CHa }} 9.8,{ }^{3} J_{a-\text { CH }, \beta-C H b} 4.2$, Phe $\left.\alpha-\mathrm{CH}\right), 5.16(2 \mathrm{H}, \mathrm{s}$,

[^5]$\mathrm{PhCH}_{2} \mathrm{O}_{2} \mathrm{C}$), 7.19 (5 H , apparent s, Phe aryl CH), 7.32 (5 H , apparent s, $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.3(\mathrm{C}-10)$, 18.8 (C-9), 18.9 (C-8), 27.2 (C-5), 31.8 (C-6), 35.9 (C-3), 39.1 (Phe $\beta-\mathrm{CH}_{2}$), 43.8 (C-4), 46.7 (C-7), 54.3 (C-1), 66.2 (Phe $\alpha-\mathrm{CH}), 66.5 \quad\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 126.2$ (Phe $\left.p-\mathrm{CH}\right), 128.1$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}, p-\mathrm{CH}\right), 128.2(\mathrm{Phe} m-\mathrm{CH}), 128.3\left(\mathrm{OCH}_{2} \mathrm{Ph}, m-\mathrm{CH}\right)$, $128.5\left(\mathrm{OCH}_{2} \mathrm{Ph}, o-\mathrm{CH}\right), 129.6$ (Phe $\left.o-\mathrm{CH}\right), 135.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right.$, i-C), 138.5 (Phe i-C), 171.4 (C=O), 185.7 (br C=N); m / z (EI) 389 $\left(1 \%, \mathrm{M}^{+}\right), 298\left(17, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right), 254\left(21, \mathrm{M}-\mathrm{CO}_{2} \mathrm{C}_{7} \mathrm{H}_{7}\right), 164$ (4, [\{M - 135\} - 90]), $92(9), 91\left(100, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right), 77\left(1, \mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}\right)$.

tert-Butyl $\quad N$-[(1R,2E,4R)-bornan-2-ylidene]-(S)-phenylalaninate 5 k \{tert-butyl (S)-3'-phenyl-2'-([1R,2E,4R]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylideneamino)propanoate\}.

tert-Butyl (S)-phenylalaninate hydrochloride $4 \mathbf{k}(1.289 \mathrm{~g}, 5$ mmol) was used in the general procedure using $\mathrm{DCM}\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, tert-butyl $N-[(1 R, 2 E, 4 R)-$ bornan-2-ylidene]-(S)-phenylalaninate $\mathbf{5 k}$, as a clear oil $(1.244 \mathrm{~g}$, 70%), $[a]_{\mathrm{D}}^{25}-181.1$ (c 0.25 in DCM) [Found: m / z (EI) M^{+}, 355.25174. Calc. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2}: M, 355.25113$, deviation 1.7 ppm]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3065 \mathrm{w}, 3029 \mathrm{~m}, 2959 \mathrm{~s}, 2874 \mathrm{~m}, 1734 \mathrm{~s}(\mathrm{C}=\mathrm{O}$ str), 1683s ($\mathrm{C}=\mathrm{N}$ str), 1604w, 1494m, 1453s, 1390m, 1367s, $1284 \mathrm{~m}, 1255 \mathrm{~m}, 1218 \mathrm{~m}, 1151 \mathrm{~s}, 748 \mathrm{~m}, ~ 698 \mathrm{~s} ; \delta_{\mathrm{H}}(300 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) \dagger \dagger \dagger 0.19(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.82(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.95(3 \mathrm{H}$, br s, C-10 Me), 1.07-1.17 (1 H , complex m, $\left.5-\mathrm{H}_{\text {endo }}\right), 1.35(1 \mathrm{H}$, complex ddd, ${ }^{2} J_{6 \text {-endo, } 6 \text {-exo }} 12.5,{ }^{3} J_{6 \text {-endo }, 5 \text {-endo }} 9.0,{ }^{3} J_{6 \text {-endo,5-exo }} 3.5$, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.44\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.57-1.68(1 \mathrm{H}$, complex overlapping $\left.\mathrm{dt}, 6-\mathrm{H}_{\text {exo }}\right), 1.72-1.80(2 \mathrm{H}$, overlapping complex $\mathrm{m}, 4-\mathrm{H}$, $\left.5-\mathrm{H}_{\mathrm{exo}}\right), 1.81\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo }, 3 \text {-exo }} 16.6,3-\mathrm{H}_{\text {endo }}\right), 1.93(1 \mathrm{H}, \mathrm{dt}$, ${ }^{2} J_{3 \text {-exo } 3 \text {-endo }} 16.6,{ }^{3} J_{4,3 \text {-exo }}$ and $\left.{ }^{4} J_{3,5 \text {-exo }} 3.5,3-\mathrm{H}_{\text {exo }}\right), 3.05-3.17(1 \mathrm{H}$, very br m, ${ }^{2} J_{\beta-\text { CHa,CHb }} 13.5,{ }^{3} J_{\beta-\text { CHa,a-CH }} 9.9$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{CH}^{\mathrm{b}}\right), 3.25$ $\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\beta-\mathrm{CHa,CHb}} 13.5,{ }^{3} J_{\beta-\mathrm{CHb}, \alpha-\mathrm{CH}} 4.0\right.$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{C} H^{\mathrm{b}}\right), 4.02$ $\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{a С Н, \beta С Н a} 9.9,{ }^{3} J_{\alpha \text { СН, вснь }} 4.0\right.$, Phe $\left.\alpha-\mathrm{CH}\right), 7.17-7.18(5 \mathrm{H}$, $2 \times$ apparent s, Phe aryl CH$) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.3$ (C-10), 18.8 (C-9), 18.9 (C-8), 27.3 (C-5), 28.1 ($\left.\mathrm{Bu}^{\mathrm{t}} \mathrm{CMe} e_{3}\right), 31.9$ (C-6), 36.0 (C-3), 38.8 (br, Phe $\beta-\mathrm{CH}_{2}$), 43.8 (C-4), 46.6 (br, C-7), 54.1 (br, C-1), 66.7 (Phe $\alpha-\mathrm{CH}$), 80.9 (br, $\mathrm{Bu}^{\mathrm{t}} \mathrm{CMe}_{3}$), 126.0 (Phe $p-\mathrm{CH}$), 128.0 (Phe $m-\mathrm{CH}$), 129.5 (Phe $o-\mathrm{CH}$), 139.0 (Phe i-C), $170.6(\mathrm{C}=\mathrm{O}), 184.8(\mathrm{C}=\mathrm{N}) ; m / z(\mathrm{EI}) 355\left(1 \%, \mathrm{M}^{+}\right), 298$ (2, $\left.\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 264\left(5, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right), 255\left(20, \mathrm{M}-\left[\mathrm{CO}_{2}+\mathrm{C}_{4} \mathrm{H}_{8}\right]\right)$, 254 (100, M - $\mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$), 209 (11), 208 (82), 108 (3, $\mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}$), 95 $\left(9, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 91\left(17, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right), 83$ (8), $77\left(7, \mathrm{C}_{6} \mathrm{H}_{5}^{+}\right), 69(10), 55$ (17).

NOE difference $\left(\mathrm{CDCl}_{3}\right)$ irradiation at $\delta 0.19 \mathrm{C}-8 \mathrm{Me}$ (enhances signal at $\delta 0.82 \mathrm{C}-9 \mathrm{Me}$ by $+4.3 \%, \delta 0.95 \mathrm{C}-10$ $\mathrm{Me}+2.4 \%, \delta 1.72-1.80 \quad 4-\mathrm{H}$ and $5-\mathrm{H}_{\text {exo }}+1.2 \%, \delta 1.93$ $3-\mathrm{H}_{\text {exo }}+2.8 \%, \delta 7.17-7.18$ Phe Ar $\left.\mathrm{CH}+2.0 \%\right), 0.82 \mathrm{C}-9 \mathrm{Me}$ (0.19 $\mathrm{C}-8 \mathrm{Me}+3.1 \%, 1.57-1.686-\mathrm{H}_{\text {exo }}+2.6 \%, 1.72-1.804-\mathrm{H}$ and $\left.5-\mathrm{H}_{\text {exо }}+4.8 \%\right), 0.95 \mathrm{C}-10 \mathrm{Me}(0.19 \mathrm{C}-8 \mathrm{Me}+3.3 \%, 0.82$ C-9 $\mathrm{Me}+1.6 \%, 7.17-7.18$ Phe $\mathrm{ArCH}+2.0 \%$), 1.07-1.17 $5-\mathrm{H}_{\text {endo }}\left(1.72-1.863-\mathrm{H}_{\text {endo }}, 4-\mathrm{H}\right.$ and $\left.5-\mathrm{H}_{\text {exo }}+19.3 \%\right), 1.30-1.40$ $6-\mathrm{H}_{\text {endo }}\left(1.57-1.863-\mathrm{H}_{\text {endo }}, 4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}\right.$ and $\left.6-\mathrm{H}_{\text {exo }}+15.6 \%\right)$, $1.57-1.686-\mathrm{H}_{\text {exo }} \quad(0.82 \mathrm{C}-9 \mathrm{Me}+3.25 \%, 0.95 \mathrm{C}-10 \mathrm{Me}$ $\left.+1.9 \%, 1.30-1.406-\mathrm{H}_{\text {endo }}+1.25 \%\right), 1.72-1.863-\mathrm{H}_{\text {endo }}, 4-\mathrm{H}$, $5-\mathrm{H}_{\text {exo }}\left(0.82 \mathrm{C}-9 \mathrm{Me}+4.5 \%, 1.07-1.175-\mathrm{H}_{\text {endo }}+13.6 \%, 1.88-\right.$ $1.983-\mathrm{H}_{\text {exo }}+8.7 \%, 4.02$ Phe $\left.\alpha-\mathrm{CH}+4.5 \%\right), 1.88-1.983-\mathrm{H}_{\text {exo }}$ $\left(1.74-1.823-\mathrm{H}_{\text {endo }}, 4-\mathrm{H}\right.$ and $5-\mathrm{H}_{\text {exo }}+5.4 \%$, 4.02 Phe $\alpha-\mathrm{CH}$ $+4.5 \%$).

Temperature-dependence study $\left(\delta_{\mathrm{H}} ; \mathrm{CDCl}_{3}\right)$.-As the temperature was lowered (only $+60,0$ and $-60^{\circ} \mathrm{C}$ are recorded here), the following principal changes in chemical shift and multiplicity occurred; 0.19 , s, C-8 $\mathrm{Me}(0.23 \mathrm{~s}, 0.11 \mathrm{~s},-0.03 \mathrm{~s})$, 0.82 , s, C-9 Me ($0.84 \mathrm{~s}, 0.79 \mathrm{~s}, 0.76 \mathrm{~s}$), 0.95 , s, C-10 Me $(0.97 \mathrm{~s}$, $0.92 \mathrm{~s}, 0.89 \mathrm{~s}$), 1.44 , s, Bu^{t} (no change), $3.05-3.17$ very br m, Phe $\beta-\mathrm{CH}_{\mathrm{a}}\left(3.06-3.17\right.$ very br m, 3.04-3.06 br m, $3.05 \mathrm{t},{ }^{2} J_{\beta-\mathrm{CHa}, \mathrm{CHb}}$ 12), 3.25 , dd, Phe $\beta-\mathrm{CH}_{\mathrm{b}}$ ($3.25 \mathrm{dd}, 3.26 \mathrm{dd}, 3.27 \mathrm{br} \mathrm{d}$), 4.02,

[^6]dd, Phe $\alpha-\mathrm{CH}(4.27 \mathrm{dd}, 4.13 \mathrm{dd}, 4.00 \mathrm{br} \mathrm{d})\left(\delta_{\mathrm{C}} ; \mathrm{CDCl}_{3}\right)$. The broadened signals at $\delta_{\mathrm{C}} 38.8,46.6$ and 54.1 in the ambienttemperature spectrum became sharp at $60^{\circ} \mathrm{C}$.
tert-Butyl $\quad N-[(1 R, 2 E, 4 R)$-bornan-2-ylidene]-(R)-phenylalaninate 51 \{tert-butyl (R)-3'-phenyl-2'-([1R,2E,4R]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylideneamino)propanoate\}. tertButyl (R)-phenylalaninate hydrochloride $4 \mathrm{l}(1.289 \mathrm{~g}, 5 \mathrm{mmol}$) was used in the general procedure using DCM $\left(20 \mathrm{~cm}^{3}\right)$ as cosolvent and gave the product, tert-butyl N - $(1 R, 2 E, 4 R)$-bornan-2-ylidene]-(R)-phenylalaninate $\mathbf{5 I}$ as white crystals $(1.227 \mathrm{~g}$, 69%), mp $72-74{ }^{\circ} \mathrm{C}\left(\right.$ lit. ${ }^{12} 69-72{ }^{\circ} \mathrm{C}$); $[a]_{\mathrm{D}}^{24}+100.6$ ($c 0.50$ in 95% EtOH) [lit., ${ }^{12}[a]_{\mathrm{D}}^{26}+86.5$ ($c 10$ in $\left.\left.95 \% \mathrm{EtOH}\right)\right]$ [Found: C, 77.7 ; $\mathrm{H}, 9.3$; $\mathrm{N}, 4.0$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2}$: C, 77.7; H, 9.4; N, 3.9\%. Found: m / z (EI) M^{+}, 355.25109. Calc. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2}: M$, 355.25113 , deviation 0.1 ppm$] ; v_{\max }($ film $) / \mathrm{cm}^{-1} 3065 \mathrm{w}, 3032 \mathrm{w}$, 2960s, 2877m, 1736s (C=O str), 1684s (C=N str), 1490w, 1452m, $1391 \mathrm{w}, 1369 \mathrm{~m}, 1284 \mathrm{~m}, 1252 \mathrm{w}, 1218 \mathrm{w}, 1152 \mathrm{~s}, 746 \mathrm{w}, 699 \mathrm{~m}$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.62\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{5 \text {-endo, }, \text {-exo }}$ $\left.12.0,{ }^{3} J_{5-\text { endo } 6 \text {-endo }} 9.0,{ }^{3} J_{5 \text {-endo } 6 \text {-exo }} 4.0,5-\mathrm{H}_{\text {endo }}\right), 0.71(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8$ $\mathrm{Me}), 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.95(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 0.98(1 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{6 \text {-endo }, \text {-exo }} 12.0,{ }^{3} J_{6 \text {-endo, }, \text {-endo }} 9.0,{ }^{3} J_{6 \text {-endo }, 5 \text {-exo }} 4.0$, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.07\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo, } 3 \text {-exo }} 16.5,3-\mathrm{H}_{\text {endo }}\right), 1.41\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$, $1.47\left(1 \mathrm{H}\right.$, partially submerged dt, ${ }^{2} J_{6 \text {-exo, } 6 \text {-endo }}$ and ${ }^{3} J_{6 \text {-exo, }, \text {-exo }} 12.0$, $\left.{ }^{3} J_{6 \text {-exo, } 5 \text {-endo }} 4.0,6-\mathrm{H}_{\text {exo }}\right), 1.55-1.66\left(1 \mathrm{H}\right.$, complex m, $\left.5-\mathrm{H}_{\text {exo }}\right), 1.69$ (1 H , apparent $\left.\mathrm{t},{ }^{3} J_{4,3 \text {-xx }} 4.0,{ }^{3} J_{4,5-\mathrm{exo}} 4.2,4-\mathrm{H}\right), 2.19(1 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{3 \text {-exo,3-endo }} 17.0,{ }^{3} J_{4,3 \text {-exo }} 4.0,{ }^{4} J_{3,5 \text {-exo }} 3.5,3-\mathrm{H}_{\mathrm{exo}}$), $3.015\left(1 \mathrm{H}\right.$, dd, ${ }^{2} J_{\beta-\text { CHa,CHb }} 13.2,{ }^{3} J_{\beta-\text { CHa,a-CH }} 10.0$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{CH}^{\mathrm{b}}\right)$, $3.235\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\beta-\text { CHa,CHb }} 13.2,{ }^{3} J_{\beta-C H b, a-C H} 4.0\right.$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{C} H^{\mathrm{b}}\right)$,
 $7.17\left(5 \mathrm{H}, 2 \times\right.$ apparent s, Phe aryl CH); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 11.5 (C-10), 18.8 (C-9), 19.4 (C-8), 27.1 (C-5), 28.0 (Bu^{t} $\mathrm{CMe} \mathrm{e}_{3}$), 31.7 (C-6), 35.8 (C-3), 38.6 (Phe $\beta-\mathrm{CH}_{2}$), 43.5 (C-4), 47.0 (C-7), 53.9 (C-1), 66.6 (Phe $\alpha-\mathrm{CH}), 80.8\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{CMe}_{3}\right)$, 126.1 (Phe $p-\mathrm{CH}$), 128.0 (Phe $m-\mathrm{CH}$), 129.8 (Phe $o-\mathrm{CH}$), 138.9 (Phe i-C), $171.0(\mathrm{C}=\mathrm{O}), 184.9$ ($\mathrm{C}=\mathrm{N}$); m/z (EI) 356 $\left(7 \%, \mathrm{MH}^{+}\right), 298\left(2, \mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right), 264\left(47, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}\right), 255$ (67, M - [$\left.\mathrm{CO}_{2}+\mathrm{C}_{4} \mathrm{H}_{8}\right]$), 254 (99, M - $\mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$), 209 (55), 208 (100), 164 ($\left.9, \mathrm{M}-\left[\mathrm{C}_{7} \mathrm{H}_{7}+\mathrm{CO}_{2} \mathrm{Bu}^{t}\right]\right), 108\left(7, \mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right.$), 95 (21, $\mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}$), $91\left(33, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right), 77\left(16, \mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}\right), 69(17), 57(46)$.

Methyl N-[(1R,2E,4R)-bornan-2-ylidene]-(S)-tyrosinate 5 m

 \{methyl (S)-3'-(4-hydroxyphenyl)-2' -([1R,2E,4R]-1,7,7-tri-methylbicyclo[2.2.1]heptan-2-ylideneamino)propanoate\}.Methyl (S)-tyrosinate hydrochloride $\mathbf{4 m}(1.158 \mathrm{~g}, 5 \mathrm{mmol})$ was used in the general procedure using DCM ($20 \mathrm{~cm}^{3}$) as co-solvent and gave the product, methyl $N-[(1 R, 2 E, 4 R)$ -bornan-2-ylidene]-(S)-tyrosinate $\mathbf{5 m}$, as white, needle-shaped crystals ($1.153 \mathrm{~g}, 70 \%$), mp $48.0-49.0^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25.5}-131.7(c 0.50$ in DCM) [Found: C, 72.7; H, 8.3; N, 4.35. Calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3}$: C, 72.9 ; H, 8.3; N, 4.25\%. Found: m / z (EI) M^{+}, 329.19981. Calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{3}: M, 329.19909$, deviation 2.2 ppm]; $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 3600-2800 \mathrm{br}$ (OH str), 3033m, 2958s, 1739s (C=O str), $1671 \mathrm{~s}(\mathrm{C}=\mathrm{N}$ str $), 1513 \mathrm{~m}, 1446 \mathrm{~m}, 1372 \mathrm{~m}, 736 \mathrm{~m} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.27(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.97(3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}-10 \mathrm{Me}), 1.10-1.20\left(1 \mathrm{H}\right.$, complex $\left.\mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right), 1.365(1 \mathrm{H}$, complex ddd, ${ }^{2} J_{6 \text {-endo }, 6 \text {-exo }} 13.0,{ }^{3} J_{6 \text {-endo }, 5 \text {-endo }} 9.2,{ }^{3} J_{6 \text {-endo }, 5 \text {-exo }} 4.0$, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.57-1.68\left(1 \mathrm{H}\right.$, complex dt, ${ }^{2} J_{6 \text {-exo, } 6 \text {-endo }}$ and ${ }^{3} J_{6 \text {-exo, } 5 \text {-exo }}$ $\left.13.0,{ }^{3} J_{6 \text {-exo,5-endo }} 3.8,6-\mathrm{H}_{\mathrm{exo}}\right), 1.72-1.82(2 \mathrm{H}$, overlapping complex m, $\left.4-\mathrm{H}, 5-\mathrm{H}_{\mathrm{exo}}\right)$, $1.815\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3-\text { endo }, 3 \text {-exo }} 17.0,3-\mathrm{H}_{\text {endo }}\right)$, $1.99\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{3 \text {-exo, } 3 \text {-endo }} 17.0,{ }^{3} J_{4,3 \text {-exo }}\right.$ and $\left.{ }^{4} J_{3 \text {-exo }, 5 \text {-exo }} 3.5,3-\mathrm{H}_{\mathrm{exo}}\right)$, $3.05\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\beta-\text { СНа }, \text { СНb }} 13.2,{ }^{3} J_{\beta-\text { СНa, },-С H} 10.0\right.$, Tyr $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{CH}^{\mathrm{b}}\right)$, $3.21\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\beta-\text { CHa,CHb }} 13.2,{ }^{3} J_{\beta-C H b, a-C H} 4.3\right.$, $\left.\operatorname{Tyr} \beta-\mathrm{CH}^{\mathrm{a}} \mathrm{CH}^{\mathrm{b}}\right)$, $3.685\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right), 4.16\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\alpha-C H, \beta-C H a} 10.0\right.$, ${ }^{3} J_{a-C H, \beta-C H b} 4.3$, Tyr $\left.\alpha-\mathrm{CH}\right), 6.4-6.6(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 6.71$ and $7.04\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J\right.$ 8.0, $\left.\mathrm{Ar} m-\mathrm{H}\right]$ and $2 \mathrm{H}, \mathrm{d},{ }^{3} J 8.0, \mathrm{Ar}$ $\left.o-\mathrm{H}], \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, \mathrm{Tyr}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.3$ (C-10), 18.8 (C-9), 19.0 (C-8), 27.2 (C-5), 31.8 (C-6), 36.2 (C-3), 38.1 (Tyr $\left.\beta-\mathrm{CH}_{2}\right), 43.7(\mathrm{C}-4), 47.0(\mathrm{C}-7), 52.1\left(\mathrm{OCH}_{3}\right), 54.6(\mathrm{C}-1), 66.4$ $(\operatorname{Tyr} \alpha-\mathrm{CH}), 115.3\left(\operatorname{Tyr} 3^{\prime}-\mathrm{CH}\right), 129.6$ (Tyr $\left.1^{\prime}-\mathrm{C}\right), 130.5$ (Tyr
$\left.2^{\prime}-\mathrm{CH}\right), 154.9\left(\operatorname{Tyr} 4^{\prime}-\mathrm{C}\right), 172.1(\mathrm{C}=\mathrm{O}), 186.1(\mathrm{C}=\mathrm{N}) ; m / z(\mathrm{EI})$ $329\left(4 \%, \mathrm{M}^{+}\right), 301$ (3), 270 ($20, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}$), 222 (100 , $\left.\mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}\right), 194$ (16), 162 (4), 137 (7), 107 (6, $\left.\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}^{+}\right), 83$ (11), 69 (7), 55 (3).

Racemic camphorylidene α-amino ester derivative

Racemic ethyl N-[(1R,2E,4R and $1 S, 2 E, 4 S)$-bornan-2ylidene]glycinate 50 \{racemic ethyl ($[1 R, 2 E, 4 R$ and $1 S, 2 E, 4 S]-$ 1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylideneamino)acetate\}.
(\pm)-Camphor imine nitrate salt $\mathbf{2 a}(1.07 \mathrm{~g}, 5 \mathrm{mmol})$ and ethyl glycinate hydrochloride $4 \mathrm{a}(0.70 \mathrm{~g}, 5 \mathrm{mmol})$ were used in the general procedure using $\mathrm{DCM}\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, racemic ethyl $N-[(1 R, 2 E, 4 R$ and $1 S, 2 E, 4 S)$ -bornan-2-ylidene]glycinate 5o, as a pale yellow oil (753 mg , 63%), $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2962 \mathrm{~s}, 2880 \mathrm{~s}, 1747 \mathrm{~s}$ ($\mathrm{C}=\mathrm{O} \operatorname{str}$), 1689 s ($\mathrm{C}=\mathrm{N} \operatorname{str}$), 1473m, 1448s, 1392m, 1372s, 1339m, 1184s; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.70(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.84(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.91$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.07-1.16\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{5 \text {-endo, }, \text {-exo }}$ $\left.12.5,{ }^{3} J_{5 \text {-endo }, 6 \text {-endo }} 9.0,{ }^{3} J_{5 \text {-endo }, 6 \text {-exo }} 4.0,5-\mathrm{H}_{\text {endo }}\right), 1.160$ and 1.163 $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}\right), \mathrm{t}+1.25-1.37(1 \mathrm{H}$, overlapping ddd, $\left.{ }^{2} J_{6 \text {-endo, } 6 \text {-exo }} 14.5,{ }^{3} J_{6 \text {-endo,5-endo }} 9.0,{ }^{3} J_{6 \text {-endo,5-exo }} 4.0,6-\mathrm{H}_{\text {endo }}\right), 1.58$ ${ }^{(1 \mathrm{H}, \mathrm{endo}, 6 \text {-exo }} \mathrm{dt}^{2} J_{6 \text {-exo }, 6 \text {-endo }} 14.5,{ }^{3} J_{6 \text {-exo, }, 5 \text {-endo }}$ and $\left.{ }^{3}{ }^{3} J_{6 \text {-exo }, 5 \text {-exo }} 4.0,6-\mathrm{H}_{\text {exo }}\right)$, $1.72\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo, } 3 \text {-exo }} 17.0,3-\mathrm{H}_{\text {endo }}\right), 1.71-1.83\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {exo }}\right)$, $1.86\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and $\left.{ }^{3} J_{4,5 \text {-exo }} 4.0,4-\mathrm{H}\right), 2.23\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{3 \text {-exo, } 3 \text {-endo }}\right.$ $17.0,{ }^{3} J_{3 \text {-exo }, 4}$ and $\left.{ }^{4} J_{3 \text {-exo, } 5 \text {-exo }} 4.0,3-\mathrm{H}_{\text {exo }}\right), 3.70$ and $3.77(2 \mathrm{H}, 2 \times \mathrm{s}$, $\left.\mathrm{NCH}_{2}\right)$,§ 4.065 and $4.071\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}\right)$;+t $\delta_{\mathrm{c}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.1(\mathrm{C}-10), 14.1\left(\mathrm{Gly}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 18.9$ (C-9), 19.4 (C-8), 27.3 (C-5), 31.9 (C-6), 35.6 (C-3), 43.8 (C-4), $47.2(\mathrm{C}-7), 53.8\left(\mathrm{Gly}, \alpha-\mathrm{CH}_{2}\right), 54.1(\mathrm{C}-1), 60.6\left(\mathrm{Gly}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 170.2 (C=O), $187.4(\mathrm{C}=\mathrm{N})$.

Diastereomeric camphorylidene α-amino ester derivatives

Diastereomeric methyl $N-[(1 R, 2 E, 4 R$ and $1 S, 2 E, 4 S)$-bornan-2-ylidene]-(S)-leucinate 5 p \{diastereomeric methyl (S)-4'-methyl-2'-([1R,2E,4R and $1 S, 2 E, 4 S]-1,7,7$-trimethylbicyclo-[2.2.1]heptan-2-ylideneamino)pentanoate\}.
(\pm)-Camphor imine nitrate salt $\mathbf{2 a}(1.07 \mathrm{~g}, 5 \mathrm{mmol})$ and methyl (S)-leucinate hydrochloride $4 \mathrm{~d}(908 \mathrm{mg}, 5 \mathrm{mmol})$ were used in the general procedure using $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, methyl $N-[(1 R, 2 E, 4 R$ and $1 S, 2 E, 4 S)$-bornan-2-ylidene)-(S)-leucinate $5 \mathbf{5 p}$, as a clear oil ($251 \mathrm{mg}, 18 \%$), $v_{\max }($ film $) / \mathrm{cm}^{-1} 2962 \mathrm{~s}, 2876 \mathrm{~s}, 1745 \mathrm{~s}$ ($\mathrm{C}=\mathrm{O} \operatorname{str}$), $1687 \mathrm{~s}(\mathrm{C}=\mathrm{N}$ str), $1475 \mathrm{~m}, 1450 \mathrm{~m}, 1419 \mathrm{w}, 1391 \mathrm{~m}, 1373 \mathrm{~m}, 1314 \mathrm{~m}, 1278 \mathrm{~m}, 1199 \mathrm{~m}$, $1168 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.74 / 0.78(6 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me})$, $0.82 / 0.85\left[6 \mathrm{H}, \mathrm{d},{ }^{3} J_{(\text {Mea }, \gamma-\mathrm{CH})} 6.7\right.$, Leu $\left.\delta-\mathrm{Me}_{\mathrm{a}}\right], 0.92 / 0.93[6 \mathrm{H}, \mathrm{d}$, ${ }^{3} J_{\text {(Meb }, \gamma \text {-CH) }} 3.6$, Leu $\delta-$ Me $\left._{\mathrm{b}}\right], 0.92 / 0.94(6 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.99(6 \mathrm{H}$, s , C-10 Me), $1.15-1.24\left(2 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{5 \text {-endo, } 5 \text {-exo }} 12.5$, $\left.{ }^{3} J_{5-\text { endo }, 6 \text {-endo }} 9.0,{ }^{3} J_{5 \text {-endo,6-exo }} 4.0,5-\mathrm{H}_{\text {endo }}\right), 1.27-1.37(1 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{6 \text {-endo }, 6 \text {-exo }} 12.6,{ }^{3} J_{6 \text {-endo }, 5 \text {-endo }} 9.0,{ }^{3} J_{6 \text {-endo, } 5 \text {-exo }} 4.0$, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.36-1.46\left(1 \mathrm{H}\right.$, overlapping ddd, ${ }^{2} J_{6 \text {-endo }}$, -exo 13.2 , $\left.{ }^{3} J_{6 \text {-endo }, 5 \text {-endo }} 9.0,{ }^{3} J_{6 \text {-endo }, 5 \text {-exo }} 4.2,6-\mathrm{H}_{\text {endo }}\right), 1.51-1.93(12 \mathrm{H}$, series of continuously overlapping complex multiplets, $6-\mathrm{H}_{\text {exo }}$, Leu $\gamma-\mathrm{CH}$, Leu $\beta-\mathrm{CH}_{2}, 5-\mathrm{H}_{\text {exo }}$ and $3-\mathrm{H}_{\text {endo }}$), $1.94\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3-\mathrm{exo}}\right.$ and $\left.{ }^{3} J_{4,5-\text { exo }} 4.2,4-\mathrm{H}\right), 2.35\left(1 \mathrm{H}\right.$, overlapping complex ddd, ${ }^{2} J_{3-\text { exo }}, 3$-endo $\left.16.5,{ }^{3} J_{3 \text {-exo }, 4} 4.2,{ }^{4} J_{3 \text {-exo }, 5 \text {-exo }} 3.2,3-\mathrm{H}_{\text {exo }}\right), 2.42(1 \mathrm{H}$, overlapping complex ddd, $\left.{ }^{2} J_{3 \text {-exo }, 3 \text {-endo }} 16.5,{ }^{3} J_{3 \text {-exo }, 4} 4.2,{ }^{4} J_{3 \text {-exo, } 5 \text {-xx }} 3.2,3-\mathrm{H}_{\text {exo }}\right)$, 3.66/3.68 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}$), 3.96-4.40 (2 H , complex m, Leu $\alpha-\mathrm{CH}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 11.3/11.4 (C-10), 18.9/19.0 (C-9), 19.4/19.5 (C-8), 21.6/21.8 (Leu $\delta-\mathrm{Me}_{\mathrm{a}}$), 23.2/23.3 (Leu δ - Me_{b}), 24.70/24.74 (Leu γ-CH), 27.3/27.5 (C-5), 31.8/32.3 (C-6), 35.8/36.1 (C-3), 41.8/42.0 (Leu $\beta-\mathrm{CH}_{2}$), 43.86/43.90 (C-4), $46.8 / 47.3(\mathrm{C}-7), 51.77 / 51.84\left(\mathrm{OCH}_{3}\right), 54.2(\mathrm{C}-1), 62.54 /$ $62.58(\mathrm{Leu} \alpha-\mathrm{CH}), 173.1(\mathrm{C}=\mathrm{O}), 185.3(\mathrm{C}=\mathrm{N})$.

[^7]Diastereomeric diethyl $N-[(1 R, 2 E, 4 R$ and $1 S, 2 E, 4 S)$-bornan2 -ylidene]-(S)-glutamate $5 q$ \{diasteromeric diethyl (S)-2'([1R,2E,4R and $1 S, 2 E, 4 S]-1,7,7$-trimethylbicyclo[2.2.1]heptan-2-ylideneamino)pentanedioate\}. (\pm)-Camphor imine nitrate salt $\mathbf{2 a}(1.07 \mathrm{~g}, 5 \mathrm{mmol})$ and diethyl (S)-glutamate hydrochloride $\mathbf{4 g}$ $(1.20 \mathrm{~g}, 5 \mathrm{mmol})$ were used in the general procedure using DCM $\left(20 \mathrm{~cm}^{3}\right)$ as co-solvent and gave the product, diastereomeric diethyl N-[(1R,2E,4S and 1S,2E,4S)-bornan-2-ylidene]-(S)glutamate 5 r , as a pale yellow oil ($1.12 \mathrm{~g}, 66 \%$), $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 2962s, 2878m, 1741s (C=O str), 1685s (C=N str), 1448m, 1391m, 1374s, $1301 \mathrm{~m}, 1257 \mathrm{~s}, 1180 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.70 / 0.75$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}$), $0.87 / 0.88(6 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.93(6 \mathrm{H}, \mathrm{s}, \mathrm{C}-10$ Me), 1.09-1.22 (2 H , submerged complex $\mathrm{m}, 5-\mathrm{H}_{\text {endo }}$), $1.164 /$ $1.177\left[6 \mathrm{H}, 2 \times \mathrm{t},{ }^{3} J_{\left(\mathrm{CH}_{2}, \mathrm{Me}\right)} 7.0, \gamma-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 1.188 / 1.193$ $\left[6 \mathrm{H}, 2 \times \mathrm{t},{ }^{3} J_{\left(\mathrm{CH}_{2}, \mathrm{Me}\right)} 7.0, \alpha-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 1.29 / 1.36(2 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{6 \text {-endo, } 6 \text {-exo }} 12.5,{ }^{3} J_{6 \text {-enddo, } 5 \text {-endo }} 9.0,{ }^{3} J_{6 \text {-endo, } 5 \text {-exo }} 4.5$, $\left.6-\mathrm{H}_{\text {endo }}\right), 1.57-1.69(2 \mathrm{H}, 2 \times$ overlapping ddd [resembles tt], ${ }^{2} J_{6 \text {-exo }, 6 \text {-endo }}$ and $\left.{ }^{3} J_{6 \text {-exo, } 5 \text {-exo }} 12.5,{ }^{3} J_{6 \text {-exo }, 5 \text {-endo }} 4.5,6-\mathrm{H}_{\text {exo }}\right), 1.74-1.87$ $\left(2 \mathrm{H}\right.$, complex m, $\left.5-\mathrm{H}_{\text {exo }}\right), 1.80 / 1.84\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo, } 3 \text {-exo }} 16.7\right.$, $\left.3-\mathrm{H}_{\text {endo }}\right), 1.88 / 1.89\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{4,3 \text {-exo }}\right.$ and $\left.{ }^{3} J_{4,5 \text {-exo }} 4.6,4-\mathrm{H}\right)$, 2.01$2.39\left(10 \mathrm{H}\right.$, overlapping complex m, Glu $\beta-\mathrm{CH}_{2}$, Glu $\gamma-\mathrm{CH}_{2}$ and $\left.3-\mathrm{H}_{\mathrm{ex}}\right), 3.93 / 3.95\left(2 \mathrm{H}\right.$, dd, ${ }^{3} J_{\alpha-\text {-CH. } \beta \text {-CHa }} 9.0,{ }^{3} J_{a-\text { CH, } \beta-\text {-CHb }} 4.6$ and 4.0, Glu $\alpha-\mathrm{CH}), 4.025 / 4.064\left[4 \mathrm{H}, \mathrm{q},{ }^{3} J_{\left(\mathrm{CH}_{2}, \mathrm{Me}\right)} 7.0, \gamma-\right.$ $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right], 4.073 / 4.083$ and $4.075 / 4.088\left[4 \mathrm{H}, \mathrm{q}^{\mathrm{q}},{ }^{3} J_{\left(\mathrm{CH}_{2}, \mathrm{Me}\right)}\right.$ $\left.7.0, \alpha-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right] \cdot\left|\left|\left|\mid\right.\right.\right.$ Spectra recorded at 30,80 and $140^{\circ} \mathrm{C}$ showed no change in chemical shift or multiplicity apart from a sharpening of some of the multiplets; $\delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; CDCl_{3}) 11.2/11.3 (C-10), $14.07\left(\mathrm{Glu} \gamma-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $14.14 /$ 14.18 (Glu $\left.\alpha-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), \quad 18.8 / 18.9$ (C-9), $\quad 19.37 / 19.44$ (C-8), 27.3/27.4 (C-5), 27.7/27.9 (Glu $\beta-\mathrm{CH}_{2}$), 30.3/30.4 (Glu $\gamma-\mathrm{CH}_{2}$), 31.8/32.3 (C-6), 35.8/36.0 (C-3), 43.8/43.9 (C-4), 46.6/47.3 (C-7), 54.1/54.3 (C-1), 60.16/60.21 (Glu $\gamma-\mathrm{CO}_{2}{ }^{-}$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $60.7\left(\mathrm{Glu} \alpha-\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 62.5 / 62.8$ (Glu $\alpha-\mathrm{CH}$), $171.58 / 171.62(\gamma-\mathrm{C}=\mathrm{O}), 173.15 / 173.18(\alpha-\mathrm{C}=\mathrm{O}), 186.27 / 186.28$ (C=N).

Diastereomeric methyl $N-[(1 R, 2 E, 4 R$ and $1 S, 2 E, 4 S)$-bornan2 -ylidene]-(S)-methioninate 5 r \{diastereomeric methyl (S)-2'($[1 R, 2 E, 4 R$ and $1 S, 2 E, 4 S]-1,7,7$-trimethylbicyclo[2.2.1]heptan-2-ylideneamino)-5'-thiahexanoate\}. (\pm)-Camphor imine nitrate salt $2 \mathrm{a}(1.07 \mathrm{~g}, 5 \mathrm{mmol})$ and methyl (S)-methioninate hydrochloride $\mathbf{4 h}(998 \mathrm{mg}, 5 \mathrm{mmol})$ were used in the general procedure using DCM ($20 \mathrm{~cm}^{3}$) as co-solvent and gave the product, diastereomeric methyl N - [($1 R, 2 E, 4 R$ and $1 S, 2 E, 4 S)$-bornan-2-ylidene)-(S)-methioninate $\mathbf{5 r}$, as a pale straw-coloured oil (684 $\mathrm{mg}, 46 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 2959 \mathrm{~s}, 2877 \mathrm{~m}, 1744 \mathrm{~s}$ (C=O str), 1686 s ($\mathrm{C}=\mathrm{N} \operatorname{str}$) $, 1439 \mathrm{~m}, 1391 \mathrm{~m}, 1376 \mathrm{w}, 1276 \mathrm{~m}, 1226 \mathrm{~m}, 1201 \mathrm{~s}$, $1162 \mathrm{~m} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.71/0.76 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}$), 0.89 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}$), $0.94 / 0.95(6 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 1.12-1.31(2 \mathrm{H}$, complex overlapping $\mathrm{m}, 5-\mathrm{H}_{\text {endo }}$), 1.33-1.43 (2 H , overlapping ddd, $\left.{ }^{2} J_{6 \text {-endo }, \text {-exo }} 13.2,{ }^{3} J_{6 \text {-endo }, 5 \text {-endo }} 9.0,{ }^{3} J_{6 \text {-endo, } 5 \text {-exo }} 4.5,6-\mathrm{H}_{\text {endo }}\right)$, 1.58-1.71 $\left(2 \mathrm{H}\right.$, complex td, $\left.6-\mathrm{H}_{\text {exo }}\right), 1.75-1.87$, $(2 \mathrm{H}$, complex m , $\left.5-\mathrm{H}_{\text {exo }}\right), 1.85\left(2 \mathrm{H}, \mathrm{br} \mathrm{d},{ }^{2} J_{3 \text {-endo } 3 \text {-exo }} 16.8,3-\mathrm{H}_{\text {endo }}\right), 1.87-1.93(2 \mathrm{H}$, complex $\mathrm{br} \mathrm{m}, 4-\mathrm{H}$), $2.02 / 2.04(6 \mathrm{H}$, s , Met ε-Me), $2.08-$ $2.19\left(4 \mathrm{H}\right.$, complex m, Met $\left.\gamma-\mathrm{CH}_{2}\right), 2.30-2.58(6 \mathrm{H}$, overlapping complex m , Met $\beta-\mathrm{C} H^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}, 3-\mathrm{H}_{\text {exo }}$, Met $\beta-\mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}}$), 3.63/3.65 $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right)$, 4.08-4.15 (2 H , complex m, Met $\alpha-\mathrm{CH}$); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.3 / 11.4$ (C-10), 15.1/15.2 (Met ε-Me), 18.8/19.0 (C-9), 19.4/19.5 (C-8), 27.3/27.4 (C-5), 30.6/30.7 (Met γ - CH_{2}), 31.5/31.6 (Met $\beta-\mathrm{CH}_{2}$), 32.5 (C-6), 36.0/36.2 (C-3), 43.9 (C-4), $46.7 / 47.3(\mathrm{C}-7), 51.8 / 51.9\left(\mathrm{OCH}_{3}\right), 54.2$ (C-1), 62.0/62.1 (Met $\alpha-\mathrm{CH}), 172.46 / 172.50$ (C=O), 186.5/186.6 ($\mathrm{C}=\mathrm{N}$).

Epimeric methyl N-[(1R,2E,4R)-bornan-2-ylidene]-(S and R)phenylalaninate 5 s \{diastereomeric methyl (S and R)-3'-phenyl-$\mathbf{2}^{\prime}$-([1R,2E,4R]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylideneamino)propanoate $\}$. (R, R)-Camphor imine nitrate salt 2a (1.07 $\mathrm{g}, 5 \mathrm{mmol}$) (after conversion into the free base) and racemic methyl phenylalaninate hydrochloride $4 \mathbf{i}(1.078 \mathrm{~g}, 5 \mathrm{mmol})$ were
used in the general procedure using $\operatorname{DCM}\left(20 \mathrm{~cm}^{3}\right)$ as cosolvent and gave the product, diastereomeric methyl N [$(1 R, 2 E, 4 R)$-bornan-2-ylidene]-(S and R)-phenylalaninate 5 s , as a clear oil ($1.128 \mathrm{~g}, 72 \%$) [Found: m / z (EI) $\mathrm{M}^{+}, 313.20459$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2}: M, 313.20418$, deviation 1.3 ppm ; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3068 \mathrm{w}, 3029 \mathrm{w}, 2958 \mathrm{~s}$, 2880 m , 1745s (C=O str), 1681m (C=N str), 1604w, 1495w, 1454m, 1440m, 1389m, 1371w, $1277 \mathrm{~m}, 1244 \mathrm{~m}, 1200 \mathrm{~m}, 1169 \mathrm{~m}, 748 \mathrm{~m}, 699 \mathrm{~m} ; \delta_{\mathrm{H}}(300 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right)$)§§ for (R, R)-Camphor-(S)-phenylalanine adduct, 0.16 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}$), $0.83(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.93$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}$), $1.07-1.17\left(1 \mathrm{H}\right.$, complex $\left.\mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right), 1.33(1 \mathrm{H}$, overlapping ddd, $\left.{ }^{2} J_{6 \text {-endo } 0 \text {-exo }} 12.5,{ }^{3} J_{6 \text {-endo, } 5 \text {-endo }} 9.5,{ }^{3} J_{6 \text {-endo }, 5 \text {-exo }} 4.0,6-\mathrm{H}_{\text {endo }}\right), 1.54-$ $1.67\left(1 \mathrm{H}\right.$, overlapping complex $\left.\mathrm{m}, 6-\mathrm{H}_{\text {exo }}\right), 1.73-1.77(2 \mathrm{H}$, overlapping complex $\left.\mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}\right), 1.765\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo, } 3 \text {-exo }} 16.8\right.$, $\left.3-\mathrm{H}_{\text {endo }}\right), 1.895\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{3 \text {-exo }, 3 \text {-endo }} 16.8,{ }^{3} J_{3 \text {-exo }, 4}\right.$ and ${ }^{4} J_{3 \text {-exo, } 5 \text {-exo }}$ $\left.4.0,3-\mathrm{H}_{\text {exo }}\right), 3.09\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\beta-\text { CHa,CHb }} 13.5,{ }^{3} J_{\beta-\text { CHa,a-CH }} 9.5\right.$, Phe $\left.\beta-C H^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right), 3.29\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\beta-\mathrm{CHa}, \mathrm{Hb}} 13.5,{ }^{3} J_{\beta-\mathrm{CH}, a-\mathrm{CH}} 4.0\right.$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right), 4.155\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\alpha-\text { СН, } \beta-\text { - }} 9.5\right.$, ${ }^{3} J_{\alpha-\text { Сн }, \beta-\text { сни }} 4.0$, Phe $\alpha-\mathrm{CH}$), 7.08-7.26 (5 H , complex m, Phe $\operatorname{aryl} \mathrm{CH}) ;(R, R)$-Camphor- (R)-phenylalanine adduct, $0.60(1 \mathrm{H}$, overlapping ddd, ${ }^{2} J_{5 \text {-endo, }, 5 \text {-exo }} 12.0,{ }^{3} J_{5 \text {-endo, } 6 \text {-endo }} 9.4,{ }^{3} J_{5 \text {-endo, } 6 \text {-exx }} 4.0$, $\left.5-\mathrm{H}_{\text {endo }}\right), 0.69(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.80(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.96(3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}-10 \mathrm{Me}), 0.99\left(1 \mathrm{H}\right.$, ddd, ${ }^{2} J_{6 \text {-endo, } 6 \text {-exo }} 12.5,{ }^{3} J_{6 \text {-endo, } 5 \text {-endo }} 9.4$, $\left.{ }^{3} J_{6 \text {-endo, }, \text {-exo }} 5.0,6-\mathrm{H}_{\text {endo }}\right), 1.07\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{3 \text {-endo }, 3 \text {-exo }} 17.0,3-\mathrm{H}_{\text {endo }}\right)$, $1.48\left(1 \mathrm{H}, \mathrm{dt},{ }^{2} J_{6 \text {-exo, } 6 \text {-endo }}\right.$ and ${ }^{3} J_{6 \text {-exo, } 5 \text {-exo }} 12.0,{ }^{3} J_{6 \text {-exo, }, 5 \text {-endo }} 4.0$, $\left.6-\mathrm{H}_{\text {exo }}\right), 1.54-1.67\left(1 \mathrm{H}\right.$, overlapping complex $\left.\mathrm{m}, 5-\mathrm{H}_{\text {exo }}\right), 1.70$ (1 H , apparent $\left.\mathrm{t},{ }^{3} J_{4,3 \text {-exo }} 4.5,{ }^{3} J_{4,5 \text {-exo }} 4.6,4-\mathrm{H}\right), 2.185(1 \mathrm{H}$, overlapping ddd, $\left.{ }^{2} J_{3 \text {-exo } 0 \text {--endo }} 17.0,{ }^{3} J_{3 \text {-exo, } 4} 4.5,{ }^{4} J_{3 \text {-exo, } 5 \text {-exo }} 3.1,3-\mathrm{H}_{\text {exo }}\right)$, $3.055\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\beta-C H a, H b} 13.3,{ }^{3} J_{\beta-C H a,-C H} 9.8\right.$, Phe $\left.\beta-\mathrm{CH}^{2} \mathrm{H}^{\mathrm{b}}\right)$, $3.275\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\beta-\text { CHa,Hb }} 13.3,{ }^{3} J_{\beta-\text { CHb,a-CH }} 3.9\right.$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right), 3.69$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right), 4.12\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{a-\text { CH. }, \text {-CHa }} 9.8,{ }^{3} J_{a-\text { CH },- \text {-CHb }}\right.$ 3.9, Phe $\alpha-\mathrm{CH}), 7.08-7.26(5 \mathrm{H}$, complex m, Phe aryl CH); $\delta_{\mathrm{c}}\left(75.5 \mathrm{MHz} ; \quad \mathrm{CDCl}_{3}\right) \quad(R, R)$-Camphor- (S)-phenylalanine adduct, 11.3 (C-10), 18.8 (C-9), 18.9 (C-8), 27.2 (C-5), 31.8 (C-6), 35.9 (C-3), 39.3 (Phe $\beta-\mathrm{CH}_{2}$), 43.7 (C-4), 46.6 (C-7), $52.0\left(\mathrm{OCH}_{3}\right), 54.2(\mathrm{C}-1), 66.0(\mathrm{Phe} \alpha-\mathrm{CH}), 126.3(\mathrm{Phe} p-\mathrm{CH})$, 128.2 (Phe m-CH), 129.5 (Phe $o-\mathrm{CH}$), 138.4 (Phe i-C), 172.4 $(\mathrm{C}=\mathrm{O}), \quad 185.8 \quad(\mathrm{C}=\mathrm{N}) ; \quad(R, R)$-Camphor- (R)-phenylalanine adduct, 11.4 (C-10), 18.8 (C-9), 19.3 (C-8), 27.1 (C-5), 31.8 (C-6), 35.7 (C-3), 39.0 (Phe $\beta-\mathrm{CH}_{2}$), 43.5 (C-4), 47.0 (C-7), $52.0\left(\mathrm{OCH}_{3}\right), 54.1(\mathrm{C}-1), 66.3$ (Phe $\left.\alpha-\mathrm{CH}\right), 126.2$ (Phe $p-\mathrm{CH}$), 128.1 (Phe m-CH), 129.8 (Phe $o-\mathrm{CH}$), 138.5 (Phe i-C), 172.2 (C=O), $185.6(\mathrm{C}=\mathrm{N})$; $m / z(\mathrm{EI}) 313\left(2 \%, \mathrm{M}^{+}\right)$, 254 (15 , $\mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}$), 223 (15), 222 ($100, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{7}$), 162 (3, $[\{\mathrm{M}-90\}-59]), 121(7), 95\left(4, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 91\left(7, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right), 77$ ($3, \mathrm{C}_{6} \mathrm{H}_{5}^{+}$), 55 (3).

General procedure for the reduction of camphorylidene α-amino acid ester derivatives to the corresponding N-bornanyl amino acid ester derivatives ${ }^{25}$
A few crystals of Bromocresol Green indicator were added to a solution of the (R, R)-camphorylidene α-amino acid ester 5 (1 mmol) and sodium cyanoborohydride (4 mmol) in dry methanol ($12 \mathrm{~cm}^{3}$) under argon. The reaction mixture was stirred at ambient temperature and titrated dropwise with conc. hydrochloric acid so as to maintain the pH below 4 (indicator blue-green to yellow) for 4 days. A small amount of amorphous material was removed by filtration, and the filtrate was diluted with water $\left(25 \mathrm{~cm}^{3}\right)$, basified with 2 M aq. potassium hydroxide, and extracted thoroughly with DCM $\left(5 \times 10 \mathrm{~cm}^{3}\right)$. The organic phases were pooled, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, and filtered, and the filtrate was evaporated in vacuo to give a syrup, which was purified by flash chromatography (light petroleum [60-80 $\left.{ }^{\circ} \mathrm{C}\right]$-ethyl acetate $90: 10$). Combination and concentration of the appropriate fractions gave the desired product pure by TLC.
$\S \S \%$ For simplicity, the spectral characterisation of this epimeric material has been recorded as the individual diastereomers and not as a composite.

Ethyl N-[(1R,4R)-exo-bornan-2-yl]glycinate 6a \{ethyl N-([1R,4R]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-exo-ylamino)acetate $\}$. Ethyl N-[(1R,2E,4R)-bornan-2-ylidene]glycinate 5a and sodium cyanoborohydride gave the product, ethyl N-[($1 R, 4 R$)-exo-bornan-2-yl]glycinate 6a, as a pale yellow oil ($120 \mathrm{mg}, 50 \%$) [Found: m / z (EI) M^{+}, 239.18803. Calc. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{2}: M, 239.18853$, deviation 2.1 ppm$] ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ 3360w (N-H str), 2975s, 2880s, 1750s (C=O str), 1453m, 1377m, $1200 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.87(3 \mathrm{H}, \mathrm{s}$, $\mathrm{C}-10 \mathrm{Me}), 0.99(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.95-1.05\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right.$ and $\left.6-\mathrm{H}_{\text {endo }}\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}\right), 1.39-1.55(4 \mathrm{H}$, complex m, $3-\mathrm{H}_{\text {endo }}$, $4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}$ and $6-\mathrm{H}_{\text {exo }}$), $1.60-1.65(2 \mathrm{H}, \mathrm{br}$ m, $3-\mathrm{H}_{\text {exo }}$ and NH$), 2.44\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{2 \text {-endo, } 3 \text {-endo }}\right.$ and ${ }^{3} J_{2 \text {-endo,3-exo }} 6.8$, $\left.2-\mathrm{H}_{\text {endo }}\right), 3.23$ and $3.29\left(2 \mathrm{H}, 2 \times\right.$ complex d, ${ }^{2} J_{a-\text { CHa, CHb }} 17.0, \mathrm{AB}$ system $\left.\mathrm{NCH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right), 4.13\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}\right) ; \delta_{\mathrm{H}}(300$
 $\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}\right), 0.94-1.02\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right.$ and $\left.6-\mathrm{H}_{\text {endo }}\right), 1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 1.38-1.62(6 \mathrm{H}, \mathrm{c}$ overlapping m, $3-\mathrm{H}_{\text {endo }}, 3-\mathrm{H}_{\text {exo }}, 4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}, 6-\mathrm{H}_{\text {exo }}$ and NH$), 2.45(1 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{3} J_{2 \text {-endo, } 3 \text {-endo }} 8.0,{ }^{3} J_{2 \text {-endo }, 3 \text {-exo }} 4.8,2-\mathrm{H}_{\text {endo }}\right), 3.16$ and $3.23(2 \mathrm{H}$, $2 \times$ complex d, ${ }^{2} J_{\text {a-CHa,CHb }} 17.0$, AB system $\mathrm{NCH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}$), 3.93 $\left(2 \mathrm{H}, \mathrm{q}, J \quad 7.0, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}\right) ;\| \|\| \| \mid \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.9$ (C-10), 14.2 ($\mathrm{Gly}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 20.3 (C-9), $20.5(\mathrm{C}-8), 27.3$ (C-5), 36.7 (C-6), 38.3 (C-3), 45.2 (C-4), 46.7 (C-7), 48.4 (C-1), 49.9 ($\mathrm{Gly}, \alpha-\mathrm{CH}_{2}$), $60.4\left(\mathrm{Gly}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 66.5(\mathrm{C}-2), 173.0(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{C}_{6} \mathrm{D}_{6}\right) 12.2(\mathrm{C}-10), 14.3\left(\mathrm{Gly}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 20.7$ (C-9), 20.9 (C-8), 27.8 (C-5), 37.0 (C-6), 38.7 (C-3), 45.8 (C-4), $47.0(\mathrm{C}-7), 48.7(\mathrm{C}-1), 50.2\left(\mathrm{Gly}, \alpha-\mathrm{CH}_{2}\right), 60.4\left(\mathrm{Gly}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 66.9 (C-2), 172.7 (C=O); $m / z(\mathrm{EI}), 239\left(5 \%, \mathrm{M}^{+}\right), 168$ (25), 166 $\left(25, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Et}\right), 137(8), 116\left(9, \mathrm{C}_{8} \mathrm{H}_{12}{ }^{+}\right), 95\left(63, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 81$ (37), 67 (65), 56 (100). ${ }^{36}$

NOE difference $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ irradiation at $\delta 0.77 \mathrm{C}-9 \mathrm{Me}$ (enhances signal at $\delta 1.15 \mathrm{C}-8 \mathrm{Me}$ by $+3.3 \%, \delta 1.41-1.48$ $+2.2 \%$ and $\delta 1.56-1.65+3.6 \%$, probably due to $4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}$ and $6-\mathrm{H}_{\text {exo }}$), $0.89 \mathrm{C}-10 \mathrm{Me}(0.77 \mathrm{C}-9 \mathrm{Me}+1.5 \%, 1.15 \mathrm{C}-8 \mathrm{Me}$ $+0.9 \%$, $1.57-1.61+3.8 \%$, probably NH and $6-\mathrm{H}_{\text {exo }}$), $1.15 \mathrm{C}-8$ Me ($0.77 \mathrm{C}-9 \mathrm{Me}+3.1 \%$, $0.89 \mathrm{C}-10 \mathrm{Me}+1.0 \%$, 1.57-1.61 $+2.5 \%$, probably $3-\mathrm{H}_{\mathrm{ex} 0}, 4-\mathrm{H}$ and NH), $2.452-\mathrm{H}_{\text {endo }}(0.93-1.01$ $+4.1 \%, 5-\mathrm{H}_{\text {endo }}$ and $6-\mathrm{H}_{\text {endo }}, 1.39-1.45+1.2 \%$ and $1.56-1.59$ $+1.5 \%$, probably $3-\mathrm{H}_{\text {endo }}$ and NH).

Methyl $\quad N$-[(1R,4R)-exo-bornan-2-yl]-(S)-alaninate 6b \{methyl (S)-2'-([1R,4R]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-exo-ylamino)propanoate $\}$. Methyl $N-[(1 R, 2 E, 4 R)$-bornan-2ylidene $]-(S)$-alaninate $\mathbf{5 b}$ and sodium cyanoborohydride gave the product, methyl $N-[(1 R, 4 R)$-exo-bornan- $2-y l]$ alaninate $\mathbf{6 b}$, as a yellow oil ($108 \mathrm{mg}, 45 \%$) [Found: m / z (EI) M ${ }^{+}$, 239.18769. Calc. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{NO}_{2}: M, 239.18853$, deviation 3.5 ppm ; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3325 \mathrm{w}$ (N-H str), 2952s, $2875 \mathrm{~m}, 1736 \mathrm{~s}$ (C=O str), $1448 \mathrm{~m}, 1387 \mathrm{w}, 1369 \mathrm{w}, 1198 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{s}$, C-9 Me), 0.87 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}$), 1.05 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}$), $0.98-1.08$ $\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{\text {endo }}\right.$ and $\left.6-\mathrm{H}_{\text {endo }}\right), 1.22\left[3 \mathrm{H}, \mathrm{d},{ }^{3} J_{(\mathrm{Me}, a-\mathrm{CH})} 6.8\right.$, Ala β $\left.\mathrm{CH}_{3}\right], 1.40-1.52$ and $1.54-1.72\left(5 \mathrm{H}\right.$, complex $\mathrm{m}, 3-\mathrm{H}_{\text {endo }}, 3-\mathrm{H}_{\text {exo }}$, $4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}$ and $\left.6-\mathrm{H}_{\text {exo }}\right), 1.68-1.93(1 \mathrm{H}$, very br, NH), $2.42(1 \mathrm{H}$, $\mathrm{dd},{ }^{3} J_{2 \text {-endo, } 3 \text {-endo }} 7.8,{ }^{3} J_{2 \text {-endo } 3 \text {-exo }} 0.8,2-\mathrm{H}_{\text {endo }}, 3.30\left[1 \mathrm{H}, \mathrm{q},{ }^{3} J_{(a-\mathrm{CH}, \mathrm{Me})}\right.$ 6.8, Ala $\alpha-\mathrm{CH}], 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; \delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; CD$\left.\mathrm{Cl}_{3}\right) 11.8(\mathrm{C}-10)$, $19.8\left(\mathrm{Ala} \beta-\mathrm{CH}_{3}\right), 20.5(\mathrm{C}-9), 20.5(\mathrm{C}-8), 27.3$ (C-5), 36.8 (C-6), 38.0 (C-3), 45.4 (C-4), 46.7 (C-7), 48.2 (C-1), $51.5\left(\mathrm{OCH}_{3}\right), 54.2(\mathrm{Ala} \alpha-\mathrm{CH}), 64.3(\mathrm{C}-2)$ and $176.9(\mathrm{C}=\mathrm{O})$; m / z (EI) $239\left(4 \%, \mathrm{M}^{+}\right), 208(10, \mathrm{M}-\mathrm{OMe}), 180\left(26, \mathrm{M}-\mathrm{CO}_{2}^{-}\right.$ $\mathrm{Me}), 137\left(12,180-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}\right), 95\left(34, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 83$ (29), 57 (100).

Methyl N-[($1 R, 4 R)$-exo-bornan-2-yl]-(S)-isoleucinate $\quad 6 e$ \{methyl ($2^{\prime} S, 3^{\prime} S$)-3'-methyl-2'-([1R,4R]-1,7,7-trimethylbicyclo-[2.2.1]heptan-2-exo-ylamino)pentanoate $\}$. Methyl $N-[(1 R, 2 E$,

[^8]$4 R$)-bornan-2-ylidene]-($2^{\prime} S, 3^{\prime} S$)-isoleucinate $5 \mathbf{e}$ and sodium cyanoborohydride gave the product, methyl $N-[(1 R, 4 R)$-exo-bornan-2-yl]-(S)-isoleucinate 6e, as a clear oil ($155 \mathrm{mg}, 55 \%$) [Found: m/z (EI) M ${ }^{+}$, 281.23585. Calc. for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{2}: M$, 281.23548, deviation 1.3 ppm]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3339 \mathrm{w}(\mathrm{N}-\mathrm{H}$ str), 2953s, 2877s, 1734s (C=O str), 1453m, 1433m, 1388w, $1195 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.80(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9 \mathrm{Me}), 0.85(3 \mathrm{H}$, $\mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 0.855\left[3 \mathrm{H}, \mathrm{t},{ }^{3} J_{\left(\mathrm{Me}, \gamma-\mathrm{CH}_{2}\right)} 6.4\right.$, Ile δ-Me], 1.02 $\left[3 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\text {(Ме }, \beta \text {-CH) }} 8.2\right.$, Ile γ-Me], $1.08(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 1.00-$ $1.21\left(3 \mathrm{H}\right.$, complex overlapping $\mathrm{m}, 5-\mathrm{H}_{\text {endo }}, 6-\mathrm{H}_{\text {endo }}$ and Ile $\left.\gamma-\mathrm{CH}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right), 1.37-1.61$ and 1.62-1.72 8 H , complex overlapping $\mathrm{m}, 3-\mathrm{H}_{\text {endo }}, 3-\mathrm{H}_{\mathrm{exo}}, 4-\mathrm{H}, 5-\mathrm{H}_{\mathrm{exo}}, 6-\mathrm{H}_{\mathrm{exo}}$, NH, Ile $\gamma-\mathrm{CH}^{\mathrm{a}} H^{\mathrm{b}}$ and Ile $\beta-\mathrm{CH}), 2.37\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $\left.2-\mathrm{H}_{\text {endo }}\right), 2.95(1 \mathrm{H}$, br d, Ile $\alpha-\mathrm{CH})$, $3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.1$ (Ile $\delta-\mathrm{CH}_{3}$), 11.7 (C-10), 16.0 (Ile γ - CH_{3}), 20.5 (C-9), 20.5 (C-8), 25.2 (Ile $\gamma-\mathrm{CH}_{2}$), 27.3 (C-5), 36.8 (C-6), 37.4 (C-3), 38.1 (Ile $\beta-\mathrm{CH}$), 45.5 (C-4), 46.6 (C-7), $48.2(\mathrm{C}-1), 51.2\left(\mathrm{OCH}_{3}\right), 63.8$ (Ile $\left.\alpha-\mathrm{CH}\right), 64.3$ (C-2), 176.6 (C=O); m/z (EI) 281 ($11 \%, \mathrm{M}^{+}$), 225 (9, M $\mathrm{C}_{4} \mathrm{H}_{8}$), 222 ($100, \mathrm{M}-\mathrm{CO}_{2} \mathrm{Me}$), $210\left(29, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{2}\right.$), 137 (35, $222-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}$), $95\left(54, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 81$ (39), 69 (19), 57 (13).

Methyl $N-[(1 R, 4 R)$-exo-bornan-2-yl]-(S)-phenylalaninate $6 \mathbf{i}$ \{methyl (S)-3'-phenyl-2'-([1R,4R]-1,7,7-trimethylbicyclo-[2.2.1]hept-2-exo-ylamino)propanoate $\}$. Methyl $N-[(1 R, 2 E, 4 R)$ -bornan-2-ylidene]-(S)-phenylalaninate $\mathbf{5 i}$ and sodium cyanoborohydride gave the product, methyl $N-[(1 R, 4 R)$-exo-bornan-$2-y l l-(S)$-phenylalaninate $\mathbf{6 i}$, as a pale yellow oil ($151 \mathrm{mg}, 48 \%$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3364 \mathrm{w}(\mathrm{N}-\mathrm{H}$ str), 2971s, 2875m, 1745s (C=O str), $1448 \mathrm{~m}, 1382 \mathrm{w}, 1180 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{s}$, C-9 Me), 0.88 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}$), 0.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}$), $0.96-1.09$ $\left(2 \mathrm{H}\right.$, complex $\mathrm{m}, 5-\mathrm{H}_{\text {endo }}$ and $\left.6-\mathrm{H}_{\text {endo }}\right), 1.36-1.53(3 \mathrm{H}$, complex overlapping $\mathrm{m}, 4-\mathrm{H}, 5-\mathrm{H}_{\text {exo }}$ and $\left.6-\mathrm{H}_{\text {exo }}\right), 1.59-1.68(3 \mathrm{H}$, complex $\mathrm{m}, 3-\mathrm{H}_{\text {endo }}, 3-\mathrm{H}_{\text {exo }}$ and NH$), 2.43\left(1 \mathrm{H}, \mathrm{t}, J 6.2,2-\mathrm{H}_{\text {endo }}\right), 2.81$ and $2.90(2 \mathrm{H}$, complex dd, second order AB part of ABX pattern, ${ }^{2} J_{\beta-\text { CHa,CHb }} 13.3$, Phe $\left.\beta-\mathrm{CH}^{\mathrm{a}} \mathrm{CH}^{\mathrm{b}}\right)$,**** $3.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{X}$ part of
 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}\right), 7.15-7.32(5 \mathrm{H}$, complex m, Phe aryl CH$)$; $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.8(\mathrm{C}-10), 20.3(\mathrm{C}-9), 20.6(\mathrm{C}-8), 27.3$ (C-5), 36.8 (C-6), 37.6 (C-3), 40.5 (C-4), 45.4 (Phe $\beta-\mathrm{CH}_{2}$), 46.6 (C-7), $48.2(\mathrm{C}-1), 51.4\left(\mathrm{OCH}_{3}\right), 60.6$ (Phe $\left.\alpha-\mathrm{CH}\right), 64.1(\mathrm{C}-2)$, 126.4 (Phe $p-\mathrm{CH}$), 128.1 (Phe $m-\mathrm{CH}$), 129.3 (Phe $o-\mathrm{CH}$), 138.0 (Phe i-C), 175.8 (C=O).
tert-Butyl $\quad N$-[(1R,4R)-exo-bornan-2-yl]-(S)-phenylalaninate 6k \{tert-Butyl (S)-3'-phenyl-2'-([1R,4R]-1,7,7-trimethylbicyclo-[2.2.1]hept-2-exo-ylamino)propanoate . tert-Butyl $N-[(1 R, 2 E$, $4 R$)-bornan-2-ylidene]-(S)-phenylalaninate $\mathbf{5 k}$ and sodium cyanoborohydride gave the product, tert-butyl $N-[(1 R, 4 R)$ -exo-bornan-2-yl]-(S)-phenylalaninate $\mathbf{6 k}$, as a clear oil (161 mg , 45\%) [Found: m / z (EI) M ${ }^{+}$, 357.26710. Calc. for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{2}$: $M, 357.26678$, deviation 0.8 ppm$] ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3325 \mathrm{w}(\mathrm{N}-\mathrm{H}$ str), 3065w, 3030w, 2951s, 2875s, 1723s (C=O str), 1476m, $1452 \mathrm{~m}, 1367 \mathrm{~m}, 1151 \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-9$ $\mathrm{Me}), 0.87(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-10 \mathrm{Me}), 0.93(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-8 \mathrm{Me}), 0.98$ and 1.03 $\left(2 \mathrm{H}, \mathrm{dd},{ }^{3} J_{5-\text { endo, }}\right.$-endo $10.0,5-\mathrm{H}_{\text {endo }}$ and $\left.6-\mathrm{H}_{\text {endo }}\right), 1.39(9 \mathrm{H}, \mathrm{s}$, Bu^{t}), $1.38-1.55$ (3 H , complex overlapping m, $4-\mathrm{H}, 5-\mathrm{H}_{\mathrm{exo}}$ and $\left.6-\mathrm{H}_{\text {exo }}\right), 1.58-1.71\left(3 \mathrm{H}\right.$, br overlapping $\mathrm{m}, 3-\mathrm{H}_{\text {endo }}, 3-\mathrm{H}_{\text {exo }}$ and $\mathrm{NH}), 2.48\left(1 \mathrm{H}, \mathrm{br} \mathrm{t},{ }^{3} J_{2 \text {-endo, } 3 \text {-endo }}\right.$ and $\left.{ }^{3} J_{2 \text {-endo, } 3 \text {-exo }} 6.0,2-\mathrm{H}_{\text {endo }}\right)$, $2.84\left[2 \mathrm{H}, \mathrm{br} \mathrm{d},{ }^{3} J_{(\beta-\mathrm{CH}, a-\mathrm{CH})} 6.0\right.$, Phe $\left.\beta-\mathrm{CH}_{2}\right], 3.31[1 \mathrm{H}$, br t , ${ }^{3} J_{(\alpha-\mathrm{CH}, \beta-\mathrm{CH})} 6.0$, Phe $\left.\alpha-\mathrm{CH}\right], 7.15-7.25$ (5 H , complex m, Phe aryl CH); $\delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 11.8$ (C-10), 20.4 (C-9), 20.5 (C-8), 27.3 (C-5), 28.1 ($\mathrm{Bu}^{\mathrm{t}} \mathrm{C} M e_{3}$), 36.9 (C-6), 37.6 (C-3), 40.3 (br Phe $\beta-\mathrm{CH}_{2}$), 45.4 (C-4), 46.5 (C-7), 48.2 (C-1), 61.2 (Phe $\alpha-\mathrm{CH}$), 64.2 (br, C-2), $80.8\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{CMe}_{3}\right), 126.3$ (Phe $p-\mathrm{CH}$), 128.0 (Phe $m-\mathrm{CH}$), 129.5 (Phe $o-\mathrm{CH}$), 138.2 (Phe i-C), 175.0 (br, C=O); m/z (EI) 358 ($0.2 \%, \mathrm{M}^{+}$), 266 (20), 257 (20, $\mathrm{M}-\mathrm{CO}_{2} \mathrm{Bu}^{t}$), 256 (100), 210 (78), $137\left(64,257-\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}\right), 120$ $\left(52, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}^{+}\right), 95\left(36, \mathrm{C}_{7} \mathrm{H}_{11}{ }^{+}\right), 91\left(18, \mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}\right), 81(54), 57$ (16).

[^9]
Acknowledgements

We thank EPSRC for an earmarked studentship (D. L. G.). We also thank Dr Vladimir Šik and Dr Keith Orrell for NMR support; Mr Eric Underwood for MS support and Mr Robin Holman for technical support.

References

1 R. W. Layer, Chem. Rev., 1962, 62, 489.
2 E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds, Wiley, New York, 1994, p. 789; E. C. Ashby and J. T. Laemmle, Chem. Rev., 1975, 75, 521; J. R. Boone and E. C. Ashby, Top. Stereochem., 1979, 11, 53.
3 H. Weingarten, J. P. Chupp and W. A. White, J. Org. Chem., 1967, 32, 3246; I. Moretti and G. Torre, Synthesis, 1970, 141.
4 L. Sheng Jian, M. Aiqiao, Y. Guishu and J. Yaozhong, Synth. Соттип., 1992, 22, 1497.
5 J. M. McIntosh, K. C. Cassidy and L. C. Matassa, Tetrahedron, 1989, 45, 5449.
6 E. P. Kyba, Org. Prep. Proced. Int., 1970, 2, 149; K. Taguchi and F. H. Westheimer, J. Org. Chem., 1971, 36, 1570.

7 R. Bolton, T. N. Danks and J. M. Paul, Tetrahedron Lett., 1994, 35, 3411.

8 B. E. Love and J. Ren, J. Org. Chem., 1993, 58, 5556.
9 I. Shahak and Y. Sasson, Synthesis, 1973, 535.
10 F. Cerreta, C. Leriverend and P. Metzner, Tetrahedron Lett., 1993, 34, 6741.
11 A. Hope and B. Halpern, Tetrahedron Lett., 1972, 2261; B. Halpern and A. P. Hope, Aust. J. Chem., 1974, 27, 2047.
12 J. M. McIntosh and P. Mishra, Can. J. Chem., 1986, 64, 726.
13 M. J. O'Donnell and R. L. Polt, J. Org. Chem., 1982, 47, 2663.
14 J. L. Simonsen and L. N. Owen, The Terpenes, Cambridge University Press, Cambridge, 2nd edn. (revised), 1949, vol. 2, p. 441.

15 F. Mahla and F. Tiemann, Ber. Dtsch. Chem. Ges., 1896, 29, 2807.
16 J. Freeman, J. Org. Chem., 1961, 26, 4190; Chem. Rev., 1973, 73, 283. 17 F. S. Guziec and J. M. Russo, Synthesis, 1984, 479.
18 D. H. R. Barton, W. B. Motherwell, E. S. Simon and S. Z. Zard, J. Chem. Soc., Chem. Commun., 1984, 337; D. H. R. Barton, W. B. Motherwell, E. S. Simon and S. Z. Zard, J. Chem. Soc., Perkin Trans. 1, 1986, 2243.
19 A. Forni, I. Moretti and G. Torre, Tetrahedron Lett., 1978, 2941.

20 M. Bodanszky and L. E. Conklin, Chem. Commun., 1967, 773.
21 K. Tori, Y. Hamashima and A. Takamizawa, Chem. Pharm. Bull., 1964, 12, 924; J. D. Connolly and R. McCrindle, Chem. Ind. (London), 1965, 379; P. V. Demarco, D. Doddrell and E. Wenkert, Chem. Comтии., 1969, 1418.
22 J. M. McIntosh and R. K. Leavitt, Tetrahedron Lett., 1986, 27, 3839.

23 J. M. McIntosh, R. K. Leavitt, P. Mishra, K. C. Cassidy, J. E. Drake and R. Chadha, J. Org. Chem., 1988, 53, 1947.
24 S. Kanemasa, A. Tatsukawa, E. Wada and O. Tsuge, Chem. Lett., 1989, 1301; S. Kanemasa, A. Tatsukawa and E. Wada, J. Org. Chem., 1991, 56, 2875.
25 R. O. Hutchins, W.-Y. Su, R. Sivakumar, F. Cistone and Y. P. Stercho, J. Org. Chem., 1983, 48, 3412; Q. C. Zhu, R. O. Hutchins and M. K. Hutchins, Org. Prep. Proced. Int., 1994, 26, 193.
26 R. O. Hutchins, J. Adams and M. C. Rutledge, J. Org. Chem., 1995, 60, 7396.
27 C. M. Cain, R. P. C. Cousins, G. Coumbarides and N. S. Simpkins, Tetrahedron, 1990, 46, 523.
28 R. J. Lewis and R. B. Moodie, J. Chem. Soc., Perkin Trans. 2, 1997, 563.

29 E. Wenkert, A. O. Clouse, D. W. Cochran and D. Doddrell, Chem. Соттип., 1969, 1433.
30 B. S. Pederson, S. Scheibye, N. H. Nilsson and S. O. Lawesson, Bull. Soc. Chim. Belg., 1978, 87, 223.
31 D. C. Sen, J. Indian Chem. Soc., 1935, 12, 647; D. C. Sen, J. Indian Chem. Soc., 1937, 14, 214.
32 E. Beckmann, Justus Liebig's Ann. Chem., 1889, 250, 322.
33 K. Auwers, Ber. Dtsch. Chem. Ges., 1889, 22, 605.
34 E. S. Rothman and A. R. Day, J. Am. Chem. Soc., 1954, 76, 111
35 E. von Sydow, Acta Chem. Scand., 1964, 18, 1099; D. S. Weinberg and C. Djerassi, J. Org. Chem., 1966, 31, 115; D. R. Dimmel and J. Wolinsky, J. Org. Chem., 1967, 32, 410.

36 D. S. Weinberg and C. Djerassi, J. Org. Chem., 1966, 31, 3832.
37 R. J. Abraham, The Analysis of High Resolution NMR Spectra, Elsevier, Amsterdam, London and New York, 1971, p. 589.

[^0]: \dagger Free camphor imine is moderately unstable, undergoing hydrolysis to camphor, but the nitrate salt is surprisingly stable.

[^1]: \ddagger The long reaction time is purely a consequence of the poor solubility of the salt of the amino component.

[^2]: || 2,4-Bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane 2,4-disulfide

[^3]: ** For the preparation of anhydrous nitric acid in dry diethyl ether see the general experimental section. Particular attention should be paid to the safety precautions mentioned.

[^4]: 9/\$ Spectroscopic evidence for this homogeneous compound indicates the existence of two conformers. This may be due to conformational isomerism involving the amino acid side-chain or the geometry of the CN double bond. Since NOE studies and temperature-dependence studies were not carried out, a distinction between these two possibilities cannot be made. The explanation is likely to reside in an equilibrium between hydrogen-bonded and non-hydrogen-bonded conformers.

[^5]: *** Spectroscopic evidence for this homogeneous compound indicates the existence of two conformers. This may be due to conformational isomerisation involving the amino acid side-chain or the geometry of the CN double bond. Since NOE studies and temperature dependence studies were not carried out, a distinction between these two possibilities cannot be made.

[^6]: $\dagger \dagger \dagger$ Spectroscopic evidence for this homogeneous compound indicates some conformational restriction.

[^7]: $\pm+$ The ${ }^{1} \mathrm{H}$ NMR signals of the ethyl ester group are split, presumably due to a conformational effect. Note: the downfield quartet and triplet are of lower intensity than the upfield component; this is in contradistinction to the corresponding behaviour of ethyl (R, R)-camphorylideneglycinate (see above).

[^8]: 9 19 The effect of asymmetric solvation on the bornylamines is very much less marked than with the camphorylidene derivatives.
 $\left|\left|\left|\left|\left|\mid\right.\right.\right.\right.\right.$ The ester CH_{2} signal is split by 0.6 Hz ; a conformational effect may be responsible.

[^9]: **** We thank Dr K. G. Orrell for analysing this second-order ABX spectrum according to Abraham. ${ }^{37}$

